Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 11 additions & 25 deletions tests/python/relax/test_frontend_dynamo.py
Original file line number Diff line number Diff line change
Expand Up @@ -157,10 +157,6 @@ def Func1(x, y):
tvm.testing.assert_allclose(opt_func(x, y), opt_func(x, y))


@pytest.mark.skipif(
version.parse(torch_version) >= version.parse("2.6.0"),
reason="Tests not compatible with PyTorch >= 2.6",
)
def test_subgraph_capture():
import torch
from tvm.relax.frontend.torch.dynamo import dynamo_capture_subgraphs
Expand All @@ -178,13 +174,13 @@ class Expected1:
@R.function
def subgraph_0(
inp_0: R.Tensor((10, 100), dtype="float32"),
w0: R.Tensor((10, 100), dtype="float32"),
w1: R.Tensor((10,), dtype="float32"),
w0: R.Tensor((10, 100), dtype="float32"),
) -> R.Tensor((10, 10), dtype="float32"):
# block 0
with R.dataflow():
lv: R.Tensor((100, 10), dtype="float32") = R.permute_dims(w0, axes=None)
lv1: R.Tensor((10, 10), dtype="float32") = R.matmul(inp_0, lv, out_dtype="float32")
lv: R.Tensor((100, 10), dtype="float32") = R.permute_dims(inp_0, axes=None)
lv1: R.Tensor((10, 10), dtype="float32") = R.matmul(w0, lv, out_dtype="float32")
lv2: R.Tensor((10, 10), dtype="float32") = R.add(lv1, w1)
lv3: R.Tensor((10, 10), dtype="float32") = R.nn.relu(lv2)
gv: R.Tensor((10, 10), dtype="float32") = lv3
Expand All @@ -193,10 +189,7 @@ def subgraph_0(

model = Input1()
mod = dynamo_capture_subgraphs(model, torch.randn(10, 100))
binding = {"w0": model.lin.weight.detach().numpy(), "w1": model.lin.bias.detach().numpy()}
binding = {k: tvm.nd.array(v) for k, v in binding.items()}
expected = relax.transform.BindParams("subgraph_0", binding)(Expected1)
tvm.ir.assert_structural_equal(mod, expected)
tvm.ir.assert_structural_equal(mod, Expected1)

def Input2(a, b):
x = a / (torch.sin(a) + 1)
Expand Down Expand Up @@ -258,27 +251,20 @@ def subgraph_0(
) -> R.Tensor((10, 10), dtype="float32"):
# block 0
with R.dataflow():
lv0 = R.add(inp_0, R.const(1, "float32"))
lv: R.Tensor((100, 10), dtype="float32") = R.permute_dims(w0, axes=None)
lv1: R.Tensor((10, 10), dtype="float32") = R.matmul(lv0, lv, out_dtype="float32")
lv2: R.Tensor((10, 10), dtype="float32") = R.add(lv1, w1)
lv3: R.Tensor((10, 10), dtype="float32") = R.nn.relu(lv2)
gv: R.Tensor((10, 10), dtype="float32") = lv3
lv: R.Tensor((10, 100), dtype="float32") = R.add(inp_0, R.const(1.0, "float32"))
lv1: R.Tensor((100, 10), dtype="float32") = R.permute_dims(w0, axes=None)
lv2: R.Tensor((10, 10), dtype="float32") = R.matmul(lv, lv1, out_dtype="float32")
lv3: R.Tensor((10, 10), dtype="float32") = R.add(lv2, w1)
lv4: R.Tensor((10, 10), dtype="float32") = R.nn.relu(lv3)
gv: R.Tensor((10, 10), dtype="float32") = lv4
R.output(gv)
return gv

model = Input3()
mod = dynamo_capture_subgraphs(model, torch.randn(10, 100), add_one=True)
binding = {"w0": model.lin.weight.detach().numpy(), "w1": model.lin.bias.detach().numpy()}
binding = {k: tvm.nd.array(v) for k, v in binding.items()}
expected = relax.transform.BindParams("subgraph_0", binding)(Expected3)
tvm.ir.assert_structural_equal(mod, expected)
tvm.ir.assert_structural_equal(mod, Expected3)


@pytest.mark.skipif(
version.parse(torch_version) >= version.parse("2.6.0"),
reason="Tests not compatible with PyTorch >= 2.6",
)
def verify_dynamo_model(torch_model, input_info, binding, expected):
import torch
import torch._dynamo as dynamo
Expand Down
Loading