Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion src/relax/transform/fuse_ops.cc
Original file line number Diff line number Diff line change
Expand Up @@ -427,10 +427,16 @@ class FunctionCreator : public ExprMutator {
}

for (const Expr& arg : call->args) {
CheckDefAndUpdateParam(arg);
if (GetStructInfoAs<TupleStructInfoNode>(arg) != nullptr) {
// The argument is fully referenced. Thus we remove it from the mapping.
partially_used_tuple_params_.erase(arg.get());
const Tuple& tup_args = Downcast<Tuple>(arg);
for (const Expr& tup_arg : tup_args->fields) {
CheckDefAndUpdateParam(tup_arg);
ICHECK(GetStructInfoAs<TupleStructInfoNode>(tup_arg) == nullptr);
}
} else {
CheckDefAndUpdateParam(arg);
}
}
}
Expand Down
73 changes: 73 additions & 0 deletions tests/python/relax/test_transform_fuse_ops_by_pattern.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
is_tuple_get_item,
make_fused_bias_activation_pattern,
wildcard,
is_tuple,
)
from tvm.relax.transform import PatternCheckContext
from tvm.script import ir as I
Expand Down Expand Up @@ -1348,5 +1349,77 @@ def local_func(
tvm.ir.assert_structural_equal(Expected, After)


def test_concat():
@R.function
def func(x: R.Tensor((10,), "float32"), y: R.Tensor((10,), "float32")):
R.func_attr({"global_symbol": "main"})
with R.dataflow():
lv = R.abs(x)
lv1 = R.abs(y)
lv2 = R.concat([lv, lv1])
gv = R.nn.relu(lv2)
R.output(gv)
return gv

@I.ir_module
class Expected1:
@R.function(private=True)
def fused_relax_abs_relax_abs_relax_concat(
x: R.Tensor((10,), dtype="float32"), y: R.Tensor((10,), dtype="float32")
) -> R.Tensor((20,), dtype="float32"):
R.func_attr({"Composite": "x.concat_abs_abs", "Primitive": True})
with R.dataflow():
lv: R.Tensor((10,), dtype="float32") = R.abs(x)
lv1: R.Tensor((10,), dtype="float32") = R.abs(y)
gv: R.Tensor((20,), dtype="float32") = R.concat((lv, lv1), axis=0)
R.output(gv)
return gv

@R.function
def main(
x: R.Tensor((10,), dtype="float32"), y: R.Tensor((10,), dtype="float32")
) -> R.Tensor((20,), dtype="float32"):
with R.dataflow():
lv: R.Tensor(
(20,), dtype="float32"
) = Expected1.fused_relax_abs_relax_abs_relax_concat(x, y)
gv: R.Tensor((20,), dtype="float32") = R.nn.relu(lv)
R.output(gv)
return gv

mod = tvm.IRModule({"main": func})
inp = is_tuple([is_op("relax.abs")(wildcard()), is_op("relax.abs")(wildcard())])
pat_clip = is_op("relax.concat")(inp)

check(mod, [("x.concat_abs_abs", pat_clip)], Expected1)

@I.ir_module
class Expected2:
@R.function(private=True)
def fused_relax_concat(
lv: R.Tensor((10,), dtype="float32"), lv1: R.Tensor((10,), dtype="float32")
) -> R.Tensor((20,), dtype="float32"):
R.func_attr({"Composite": "x.concat", "Primitive": True})
with R.dataflow():
gv: R.Tensor((20,), dtype="float32") = R.concat((lv, lv1), axis=0)
R.output(gv)
return gv

@R.function
def main(
x: R.Tensor((10,), dtype="float32"), y: R.Tensor((10,), dtype="float32")
) -> R.Tensor((20,), dtype="float32"):
with R.dataflow():
lv: R.Tensor((10,), dtype="float32") = R.abs(x)
lv1: R.Tensor((10,), dtype="float32") = R.abs(y)
lv_1: R.Tensor((20,), dtype="float32") = Expected2.fused_relax_concat(lv, lv1)
gv: R.Tensor((20,), dtype="float32") = R.nn.relu(lv_1)
R.output(gv)
return gv

pat_clip = is_op("relax.concat")(wildcard())
check(mod, [("x.concat", pat_clip)], Expected2)


if __name__ == "__main__":
pytest.main([__file__])