Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions src/relay/pass/pattern_util.h
Original file line number Diff line number Diff line change
Expand Up @@ -336,6 +336,14 @@ inline Expr ZerosLike(Expr e) {
return CallNode::make(op, {e});
}

inline Expr Zeros(Array<IndexExpr> shape, DataType dtype) {
auto attrs = make_node<InitOpAttrs>();
attrs->shape = std::move(shape);
attrs->dtype = std::move(dtype);
static const Op& op = Op::Get("zeros");
return CallNode::make(op, {}, Attrs(attrs), {});
}

inline Expr OnesLike(Expr e) {
static const Op& op = Op::Get("ones_like");
return CallNode::make(op, {e});
Expand Down
113 changes: 9 additions & 104 deletions src/relay/qnn/op/requantize.cc
Original file line number Diff line number Diff line change
Expand Up @@ -37,50 +37,7 @@ TVM_REGISTER_NODE_TYPE(RequantizeAttrs);

// Lowering of qnn.requantize op

/*
* \brief Convert FP32 representation into fixed point representation.
* \param double_multplier The input FP32 number.
* \return The pair of multiplier and shift for fixed point representation.
* \note Converts a floating point number so that it can be represented by
* integers. The representation is
* float_number = (significand) * 2^(exponent)
*
* The significand is a number between 0.5 and 1. This is represented by
* an integer number. For example, if it is int32, then the decimal point
* exists between bit 31 and 30 from LSB (or between first and second bit
* from the left).
*
* Some examples are
* 0.25 = (0.5) * 2^(-1)
* 0.125 = (0.5) * 2^(-2)
*
* Credit to TFLite reference implementation.
*/
std::pair<int32_t, int32_t> GetFixedPointMultiplierShift(double double_multiplier) {
int32_t significand, exponent;
if (double_multiplier == 0.) {
significand = 0;
exponent = 0;
return std::make_pair(significand, exponent);
}

// Get the significand and exponent.
double significand_d = std::frexp(double_multiplier, &exponent);

// Convert the double significand to int significand, i.e., convert into a
// integer where the decimal point is between bit 31 and 30. This is done by
// multiplying the double value with 2^31 and then casting to int.
significand_d = std::round(significand_d * (1ll << 31));
auto significand_int64 = static_cast<int64_t>(significand_d);
CHECK_LE(significand_int64, (1ll << 31));
if (significand_int64 == (1ll << 31)) {
significand_int64 /= 2;
++exponent;
}
CHECK_LE(significand_int64, std::numeric_limits<int32_t>::max());
significand = static_cast<int32_t>(significand_int64);
return std::make_pair(significand, exponent);
}

/*
* \brief Lower requantize to a sequence of ops.
Expand All @@ -93,93 +50,41 @@ std::pair<int32_t, int32_t> GetFixedPointMultiplierShift(double double_multiplie
* and shift. This is useful, if the target device does not support/have
* very expensive floating point computations.
*
* Original compuation is scale_fp32 * quantized_tensor. To convert into
* integer computation, the multiplication with fp32 scalar can be
* replaced by multiplication with an int value and then right shifting
* the result. This approximates the floating point computation with a
* fixed point computation.
*
* The whole computation this can be broken down into following steps
* 1) Calculate the integer multiplier and integer shift.
* 2) Subtract the input integer zero point.
* 3) Multiply the fixed point multiplier with quantized tensor.
* 4) Round the result.
* 5) Right shift the result.
* 6) Add the output zero point.
* 7) Cast to the out_dtype.
* 3) Perform fixed point multiplication.
* 4) Add the output zero point.
* 5) Cast to the out_dtype.
*/
Expr RequantizeLower(const Expr& input_tensor, const RequantizeAttrs* param,
const Array<IndexExpr>& input_shape, const DataType& out_dtype) {
double double_multiplier = param->input_scale / param->output_scale;

// Choose high precision datatype to be int64. This is for avoiding overflow
// in multiplication of two int32 values.
DataType hp_dtype = Int(64);

// 1) Calculating the integer multiplier and integer shift
int32_t fixed_point_multiplier, shift;
std::tie(fixed_point_multiplier, shift) = GetFixedPointMultiplierShift(double_multiplier);
int left_shift = shift > 0 ? shift : 0;
int right_shift = shift > 0 ? 0 : -shift;

// 2) Subtract the input_zero_point
auto tensor = Cast(input_tensor, hp_dtype);
// 1) Subtract the input_zero_point
if (param->input_zero_point != 0) {
auto input_zp = MakeConstantScalar(hp_dtype, param->input_zero_point);
tensor = Subtract(tensor, input_zp);
}

// If the input and output scales are same, we can skip the fixed point multiplication.
// 2) If the input and output scales are same, we can skip the fixed point multiplication.
auto scaled_int64_t = tensor;
if (param->input_scale != param->output_scale) {
// 3) Multiply the integer multiplier
if (left_shift != 0) {
tensor = Multiply(tensor, MakeConstantScalar(hp_dtype, 1 << left_shift));
}
// Perform the multiplication in higher precision.
// The scalar is a fixed point value of int32 where the decimal point is
// between bits 31 and 30. After multiplying with input_tensor, the result is
// in int64 where the decimal point is sitting between bits 31 and 30 (from
// the right, rightmost bit is bit 0). The computation is performed in higher
// precision to avoid overflow in multiplying two int32 values.
Expr scalar = MakeConstantScalar(hp_dtype, fixed_point_multiplier);
auto multiplied_t = Multiply(tensor, scalar);

// 4) Find the rounding scalar. This depends on where the final decimal point
// sits. As we will be right shifting the multiplied_t, we need to first
// calculate the total_right_shift.
int total_right_shift = right_shift + 31;
int64_t pos_rounding_value = (1ll << (total_right_shift - 1));

tensor = multiplied_t;
Expr round_scalar;
if (param->rounding == "UPWARD") {
round_scalar = MakeConstantScalar(hp_dtype, pos_rounding_value);
} else if (param->rounding == "TONEAREST") {
auto pos_rounder = MakeConstantScalar(hp_dtype, pos_rounding_value);
auto neg_rounder = MakeConstantScalar(hp_dtype, pos_rounding_value - 1);
auto pos_rounder_t = Full(pos_rounder, input_shape, hp_dtype);
auto neg_rounder_t = Full(neg_rounder, input_shape, hp_dtype);

auto zero = MakeConstantScalar(hp_dtype, 0);
auto zero_t = Full(zero, input_shape, hp_dtype);
round_scalar = Where(GreaterEqual(tensor, zero_t), pos_rounder_t, neg_rounder_t);
}
// Add the rounding scalar.
tensor = Add(tensor, round_scalar);

// 5) Simply right shift the result to get the final output.
scaled_int64_t = RightShift(tensor, MakeConstantScalar(hp_dtype, total_right_shift));
scaled_int64_t = FixedPointMuliply(scaled_int64_t, double_multiplier, input_shape,
param->rounding);
}

// 6) Add the output zero point.
// 3) Add the output zero point.
auto shifted_int64_t = scaled_int64_t;
if (param->output_zero_point != 0) {
auto output_zp = MakeConstantScalar(hp_dtype, param->output_zero_point);
shifted_int64_t = Add(output_zp, scaled_int64_t);
}

// 7) Clip to the out_dtype min/max.
// 4) Clip to the out_dtype min/max.
auto q_min = GetQmin(out_dtype);
auto q_max = GetQmax(out_dtype);
auto clipped_t = Clip(shifted_int64_t, q_min, q_max);
Expand Down
137 changes: 137 additions & 0 deletions src/relay/qnn/util.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file src/relay/qnn/util.cc
* \brief Utility functions for QNN.
*/

#include "util.h"
#include "../pass/pattern_util.h"

namespace tvm {
namespace relay {
namespace qnn {

/*
* \brief Convert FP32 representation into fixed point representation.
* \param double_multplier The input FP32 number.
* \return The pair of multiplier and shift for fixed point representation.
* \note Converts a floating point number so that it can be represented by
* integers. The representation is
* float_number = (significand) * 2^(exponent)
*
* The significand is a number between 0.5 and 1. This is represented by
* an integer number. For example, if it is int32, then the decimal point
* exists between bit 31 and 30 from LSB (or between first and second bit
* from the left).
*
* Some examples are
* 0.25 = (0.5) * 2^(-1)
* 0.125 = (0.5) * 2^(-2)
*
* Credit to TFLite reference implementation.
*/
std::pair<int32_t, int32_t> GetFixedPointMultiplierShift(
double double_multiplier) {
int32_t significand, exponent;
if (double_multiplier == 0.) {
significand = 0;
exponent = 0;
return std::make_pair(significand, exponent);
}

// Get the significand and exponent.
double significand_d = std::frexp(double_multiplier, &exponent);

// Convert the double significand to int significand, i.e., convert into a
// integer where the decimal point is between bit 31 and 30. This is done by
// multiplying the double value with 2^31 and then casting to int.
significand_d = std::round(significand_d * (1ll << 31));
auto significand_int64 = static_cast<int64_t>(significand_d);
CHECK_LE(significand_int64, (1ll << 31));
if (significand_int64 == (1ll << 31)) {
significand_int64 /= 2;
++exponent;
}
CHECK_LE(significand_int64, std::numeric_limits<int32_t>::max());
significand = static_cast<int32_t>(significand_int64);
return std::make_pair(significand, exponent);
}

Expr FixedPointMuliply(Expr tensor, double multiplier,
const Array<IndexExpr>& input_shape, const std::string& rounding) {
// Choose high precision datatype to be int64. This is for avoiding overflow
// in multiplication of two int32 values.
DataType hp_dtype = Int(64);

// 1) Calculating the integer multiplier and integer shift
int32_t fixed_point_multiplier, shift;
std::tie(fixed_point_multiplier, shift) =
GetFixedPointMultiplierShift(multiplier);
int left_shift = shift > 0 ? shift : 0;
int right_shift = shift > 0 ? 0 : -shift;

// 2) Multiply the integer multiplier
if (left_shift != 0) {
tensor = LeftShift(tensor, MakeConstantScalar(hp_dtype, left_shift));
}

// 3) Perform the multiplication in higher precision.
// The scalar is a fixed point value of int32 where the decimal point is
// between bits 31 and 30. After multiplying with input_tensor, the result
// is in int64 where the decimal point is sitting between bits 31 and 30
// (from the right, rightmost bit is bit 0). The computation is performed in
// higher precision to avoid overflow in multiplying two int32 values.
Expr scalar = MakeConstantScalar(hp_dtype, fixed_point_multiplier);
tensor = Multiply(tensor, scalar);

// 4) Find the rounding scalar. This depends on where the final decimal
// point sits. As we will be right shifting the multiplied_t, we need to
// first calculate the total_right_shift.
int total_right_shift = right_shift + 31;
int64_t pos_rounding_value = (1ll << (total_right_shift - 1));

Expr round_scalar;
if (rounding == "UPWARD") {
round_scalar = MakeConstantScalar(hp_dtype, pos_rounding_value);
} else if (rounding == "TONEAREST") {
auto pos_rounder = MakeConstantScalar(hp_dtype, pos_rounding_value);
auto neg_rounder = MakeConstantScalar(hp_dtype, pos_rounding_value - 1);
auto pos_rounder_t = Full(pos_rounder, input_shape, hp_dtype);
auto neg_rounder_t = Full(neg_rounder, input_shape, hp_dtype);

auto zero_t = Zeros(input_shape, hp_dtype);
round_scalar =
Where(GreaterEqual(tensor, zero_t), pos_rounder_t, neg_rounder_t);
}
// Add the rounding scalar.
tensor = Add(tensor, round_scalar);

// 5) Simply right shift the result to get the final output.
tensor =
RightShift(tensor, MakeConstantScalar(hp_dtype, total_right_shift));

return tensor;
}

} // namespace qnn
} // namespace relay
} // namespace tvm
27 changes: 27 additions & 0 deletions src/relay/qnn/util.h
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@

#include <tvm/expr.h>
#include <tvm/relay/expr.h>
#include <tvm/relay/qnn/attrs.h>
#include <limits>
#include <string>
#include <utility>
Expand Down Expand Up @@ -92,6 +93,32 @@ static inline int64_t get_const_int(const tvm::Expr& x) {
return value_ptr[0];
}

/*
* \brief Fixed point multiplication between integer tensor with floating point
scalar.
* \param tensor The quantized input tensor of dtype int64.
* \param multiplier The scalar multiplier.
* \param input_shape Shape of the input tensor.
* \param rounding "UPWARD" or "TONEAREST". The rounding direction when the value
is midway between" "two representable values.
* \return The sequence of Relay ops for fixed point multiplication.

* \note Original compuation is scale_fp32 * quantized_tensor. To convert into
* integer computation, the multiplication with fp32 scalar can be
* replaced by multiplication with an int value and then right shifting
* the result. This approximates the floating point computation with a
* fixed point computation.
*
* Computation of fixed point multiplication is consist of following
steps:
* 1) Multiply the fixed point multiplier with quantized tensor.
* 2) Round the result.
* 3) Right shift the result
*/
Expr FixedPointMuliply(Expr tensor, double multiplier,
const Array<IndexExpr>& input_shape,
const std::string& rounding);

} // namespace qnn
} // namespace relay
} // namespace tvm
Expand Down