Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ Welcome everyone to contribute to this project!
- [fibonacci.py](https://github.com/Henry-Jia/python-tools/blob/master/fibonacci.py): there're 2 algorithms that make the fibonacci with recursive and looping
- [gcd.py](https://github.com/Henry-Jia/python-tools/blob/master/gcd.py): calculate the greatest common divisor
- [igdata.py](https://github.com/Henry-Jia/python-tools/blob/master/igdata.py): Instagram Scraper, Scrapes data from public instagram profile and posts and saves it into json file.
- [image_compressor.py](https://github.com/Henry-Jia/python-tools/blob/master/image_compressor.py): This is an Image Compression example using K-Means Clustering algorithm.
- [image_stitching.py](https://github.com/Henry-Jia/python-tools/blob/master/image_stitching.py): stitching images using opencv
- [imagerecognition.py](https://github.com/Henry-Jia/python-tools/blob/master/imagerecognition.py): facial recognition in python
- [img2video.py](https://github.com/Henry-Jia/python-tools/blob/master/img2video.py): turn images to video
Expand Down
148 changes: 148 additions & 0 deletions image_compressor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
function centroids = computeCentroids(X, idx, K)

[m n] = size(X);

centroids = zeros(K, n);

for i = 1:K

ci = idx==i;

ni = sum(ci);

ci_matrix = repmat(ci, 1, n);

centroids(i, :) = sum(X .* ci_matrix) ./ ni;

end

end
function idx = findClosestCentroids(X, centroids)

K = size(centroids, 1);

idx = zeros(size(X, 1), 1);



for i = 1:size(X, 1)

index = zeros(1, K);

for j = 1:K

index(1, j) = sqrt(sum(power((X(i, :) - centroids(j, :)), 2)));

end

[d, id] = min(index);

idx(i, 1) = id;

end

end

function centroids = kMeansInitCentroids(X, K)

centroids = zeros(K, size(X, 2));



randidx = randperm(size(X, 1));

centroids = X(randidx(1:K), :);

end


[m n] = size(X);

K = size(initial_centroids, 1);

centroids = initial_centroids;

previous_centroids = centroids;

idx = zeros(m, 1);



for i = 1:max_iters

fprintf('K-Means iteration %d/%d...', i, max_iters);

if exist('OCTAVE_VERSION')

fflush(stdout)

end

idx = findClosestCentroids(X, centroids);

centroids = computeCentroids(X, idx, K);

end

end


A = double(imread('X.png'));

% Each RGB value ranges from 0-255 (8 bits representation).

% So, all values are in range 0-1

A = A/255;



img_size = size(A);

% Reshaping the img to have 1 pixel value in one row

X = reshape(A, img_size(1)*img_size(2), 3);



K = 16; % No. of clusters required (#colors here)

max_iters = 10;



initial_centroids = kMeansInitCentroids(X, K);

% Run K-Means algo

[centroids, idx] = runkMeans(X, initial_centroids, max_iters);



idx = findClosestCentroids(X, centroids);

X_recovered = centroids(idx, :);

% Image represented by 3D matrix

X_recovered = reshape(X_recovered, img_size(1), img_size(2), 3);



% Display Original image

subplot(1, 2, 1);

imagesc(A);

title('Original');



% Display Compressed image

subplot(1, 2, 2);

imagesc(X_recovered);

title('Compressed image');