Skip to content

atomag/pikala

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pikala: Opensouce implementation of Skala

Pikala is a practical, physics‑aware upgrade of a Skala XC pipeline. It adds many optimizations.

Pikala achieved accuracy exceed B3LYP. (trained on 49k samples, Not only MSR-ACC, im obtaining the data publishing licence.)

Accuracy

See the detailed notes in doc/ for more.

Midifications

  • B3LYP/def2-TZVP + gCP + D4. Smaller basis, same accuracy (hopefully)
  • Δ‑learning.
  • Mixture of Linear Experts, faster training and inference.

Quickstart

Build the smallest set (writes E_xc0_total in each shard):

.venv/bin/python scripts/build_msracc_100.py \
  --src msr-acc/tae25 --out data/msracc_s100_def2svp --k 100 \
  --grid-level 3 --scf-policy fast --disp auto --with-gcp auto

Pretrain with subset grids, Δ‑learning, and MoLE (K=8):

torchrun --standalone --nproc_per_node=8 \
  .venv/bin/python scripts/train_pretrain_msracc_s100_ddp.py \
  --data data/msracc_s100_def2svp --epochs 20 --max-lr 1e-3 \
  --subset-K 65536 --micro-grids 200000 --amp --compile \
  --moe-k 8 --moe-temp-start 2.0 --moe-temp-end 0.8 --moe-temp-epochs 10 \
  --moe-noise-start 0.5 --moe-noise-end 0.05 --moe-noise-epochs 10 \
  --moe-balance 1e-3 --moe-balance-beta 0.02 --moe-ortho 1e-4 \
  --replay-cap 64 --replay-prob 0.25

Resume on the next hop and calibrate the gate bias to the global EMA target:

torchrun --standalone --nproc_per_node=4 \
  .venv/bin/python scripts/train_pretrain_msracc_s100_ddp.py \
  --data data/<next_hop_dir> --epochs 12 --max-lr 1e-3 \
  --subset-K 65536 --micro-grids 200000 --amp --compile --resume \
  --moe-k 8 ... (same MoE flags) \
  --calibrate-gate-bias --calib-mols 2 --calib-K 65536

About

Opensource implementation of Skala https://aka.ms/SkalaDFT

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages