Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 32 additions & 23 deletions sagemaker-mlflow/sagemaker_deployment_mlflow.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,22 @@
"## Setup environment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Upgrade SageMaker Python SDK"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install --upgrade --quiet sagemaker>=2.215.0"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -86,10 +102,10 @@
"region = sagemaker_session.boto_region_name\n",
"\n",
"# S3 prefix for the training dataset to be uploaded to\n",
"prefix = 'DEMO-scikit-iris'\n",
"prefix = \"DEMO-scikit-iris\"\n",
"\n",
"# Provide the ARN of the Tracking Server that you want to track your training job with\n",
"tracking_server_arn = 'your tracking server arn here'"
"tracking_server_arn = \"your tracking server arn here\""
]
},
{
Expand Down Expand Up @@ -125,13 +141,13 @@
"\n",
"s3_client = boto3.client(\"s3\")\n",
"s3_client.download_file(\n",
" f\"sagemaker-example-files-prod-{region}\", 'datasets/tabular/iris/iris.data', './data/iris.csv'\n",
" f\"sagemaker-example-files-prod-{region}\", \"datasets/tabular/iris/iris.data\", \"./data/iris.csv\"\n",
")\n",
"\n",
"df_iris = pd.read_csv('./data/iris.csv', header=None)\n",
"df_iris[4] = df_iris[4].map({\"Iris-setosa\": 0, 'Iris-versicolor': 1, 'Iris-virginica': 2})\n",
"df_iris = pd.read_csv(\"./data/iris.csv\", header=None)\n",
"df_iris[4] = df_iris[4].map({\"Iris-setosa\": 0, \"Iris-versicolor\": 1, \"Iris-virginica\": 2})\n",
"iris = df_iris[[4, 0, 1, 2, 3]].to_numpy()\n",
"np.savetxt('./data/iris.csv', iris, delimiter=',', fmt='%1.1f, %1.3f, %1.3f, %1.3f, %1.3f')"
"np.savetxt(\"./data/iris.csv\", iris, delimiter=\",\", fmt=\"%1.1f, %1.3f, %1.3f, %1.3f, %1.3f\")"
]
},
{
Expand All @@ -147,10 +163,10 @@
"metadata": {},
"outputs": [],
"source": [
"WORK_DIRECTORY = 'data'\n",
"WORK_DIRECTORY = \"data\"\n",
"\n",
"train_input = sagemaker_session.upload_data(\n",
" WORK_DIRECTORY, key_prefix='{}/{}'.format(prefix, WORK_DIRECTORY)\n",
" WORK_DIRECTORY, key_prefix=\"{}/{}\".format(prefix, WORK_DIRECTORY)\n",
")"
]
},
Expand Down Expand Up @@ -278,17 +294,15 @@
"outputs": [],
"source": [
"sklearn = SKLearn(\n",
" entry_point='train.py',\n",
" source_dir='training_code',\n",
" framework_version='1.2-1',\n",
" instance_type='ml.c4.xlarge',\n",
" entry_point=\"train.py\",\n",
" source_dir=\"training_code\",\n",
" framework_version=\"1.2-1\",\n",
" instance_type=\"ml.c4.xlarge\",\n",
" role=role,\n",
" sagemaker_session=sagemaker_session,\n",
" hyperparameters={'max_leaf_nodes': 30},\n",
" hyperparameters={\"max_leaf_nodes\": 30},\n",
" keep_alive_period_in_seconds=3600,\n",
" environment={\n",
" 'MLFLOW_TRACKING_ARN': tracking_server_arn\n",
" }\n",
" environment={\"MLFLOW_TRACKING_ARN\": tracking_server_arn},\n",
")"
]
},
Expand Down Expand Up @@ -394,9 +408,7 @@
" mode=Mode.SAGEMAKER_ENDPOINT,\n",
" schema_builder=sklearn_schema_builder,\n",
" role_arn=role,\n",
" model_metadata={\n",
" \"MLFLOW_MODEL_PATH\": source_path\n",
" }\n",
" model_metadata={\"MLFLOW_MODEL_PATH\": source_path},\n",
")"
]
},
Expand All @@ -415,10 +427,7 @@
"metadata": {},
"outputs": [],
"source": [
"predictor = built_model.deploy(\n",
" initial_instance_count=1,\n",
" instance_type=\"ml.m5.large\"\n",
")"
"predictor = built_model.deploy(initial_instance_count=1, instance_type=\"ml.m5.large\")"
]
},
{
Expand Down
30 changes: 12 additions & 18 deletions sagemaker-mlflow/sagemaker_hpo_mlflow.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -109,11 +109,11 @@
"bucket = sagemaker_session.default_bucket()\n",
"\n",
"# S3 prefix for the training dataset to be uploaded to\n",
"prefix = 'DEMO-pytorch-mnist'\n",
"prefix = \"DEMO-pytorch-mnist\"\n",
"\n",
"# MLflow (replace these values with your own)\n",
"tracking_server_arn = 'your tracking server arn'\n",
"experiment_name = 'MNIST'"
"tracking_server_arn = \"your tracking server arn\"\n",
"experiment_name = \"MNIST\""
]
},
{
Expand Down Expand Up @@ -149,9 +149,9 @@
"metadata": {},
"outputs": [],
"source": [
"local_dir = 'data'\n",
"local_dir = \"data\"\n",
"MNIST.mirrors = [\n",
" f'https://sagemaker-example-files-prod-{region}.s3.amazonaws.com/datasets/image/MNIST/'\n",
" f\"https://sagemaker-example-files-prod-{region}.s3.amazonaws.com/datasets/image/MNIST/\"\n",
"]\n",
"MNIST(\n",
" local_dir,\n",
Expand All @@ -177,7 +177,7 @@
"metadata": {},
"outputs": [],
"source": [
"train_input = sagemaker_session.upload_data(path='data', bucket=bucket, key_prefix=prefix)"
"train_input = sagemaker_session.upload_data(path=\"data\", bucket=bucket, key_prefix=prefix)"
]
},
{
Expand Down Expand Up @@ -577,10 +577,7 @@
"\n",
"objective_metric_name = \"average test loss\"\n",
"objective_type = \"Minimize\"\n",
"metric_definitions = [\n",
" {\"Name\": \"average test loss\",\n",
" \"Regex\": \"Test set: Average loss: ([0-9\\\\.]+)\"}\n",
"]"
"metric_definitions = [{\"Name\": \"average test loss\", \"Regex\": \"Test set: Average loss: ([0-9\\\\.]+)\"}]"
]
},
{
Expand Down Expand Up @@ -612,17 +609,14 @@
" framework_version=\"1.13\",\n",
" instance_count=1,\n",
" instance_type=\"ml.c5.2xlarge\",\n",
" hyperparameters={\n",
" \"epochs\": 5,\n",
" \"backend\": \"gloo\"\n",
" },\n",
" hyperparameters={\"epochs\": 5, \"backend\": \"gloo\"},\n",
" environment={\n",
" 'MLFLOW_TRACKING_URI':tracking_server_arn,\n",
" 'MLFLOW_EXPERIMENT_NAME':experiment.name,\n",
" 'MLFLOW_PARENT_RUN_ID':run.info.run_id\n",
" \"MLFLOW_TRACKING_URI\": tracking_server_arn,\n",
" \"MLFLOW_EXPERIMENT_NAME\": experiment.name,\n",
" \"MLFLOW_PARENT_RUN_ID\": run.info.run_id,\n",
" },\n",
" )\n",
" \n",
"\n",
" tuner = HyperparameterTuner(\n",
" estimator,\n",
" objective_metric_name,\n",
Expand Down
Loading