Skip to content

TypeError: get() takes no keyword arguments - breaks training jobs #418

@robwhelan

Description

@robwhelan

I have been fine-tuning distilbert from the HuggingFace Transformers project. When calling trainer.train(), somewhere smdebug tries to call os.environ.get() and I get the above error.

There are no other messages.

It affects this line: /smdebug/core/logger.py", line 51, in get_logger whether or not I set debugger_hook_config=False

from datasets import load_dataset
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers import Trainer, TrainingArguments
import argparse
import json
import logging
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

#logger = logging.getLogger(__name__)
#logger.setLevel(logging.DEBUG)
#logger.addHandler(logging.StreamHandler(sys.stdout))

#logging.basicConfig(
#        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
#        datefmt="%m/%d/%Y %H:%M:%S",
#        level=logging.WARN,
#    )

def group_texts(examples):
    # Concatenate all texts.
    block_size = 64
    concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
    total_length = len(concatenated_examples[list(examples.keys())[0]])
    # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
    total_length = (total_length // block_size) * block_size
    # Split by chunks of max_len.
    result = {
        k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
        for k, t in concatenated_examples.items()
    }
    result["labels"] = result["input_ids"].copy()
    return result


def train(args):
    train_file = os.path.join(args.train_dir, "new_train.txt")
    valid_file = os.path.join(args.valid_dir, "new_valid.txt")

    model_checkpoint = "distilgpt2"
    
    #datasets = load_dataset('text', data_files={'train': train_file, 'test': valid_file, 'valid': valid_file})
    datasets = load_dataset('wikitext', 'wikitext-2-raw-v1')
    tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)
    tokenizer.pad_token = tokenizer.eos_token
    
    def tokenize_function(examples):
        return tokenizer(examples['text'], truncation=True, max_length=64)

    tokenized_datasets = datasets.map(tokenize_function, batched=True, num_proc=2, remove_columns=["text"])
    block_size = 64

    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        batch_size=1000,
        num_proc=2,
    )

    model = AutoModelForCausalLM.from_pretrained(model_checkpoint)

    training_args = TrainingArguments(
        "robs-chesterton-results",
        evaluation_strategy = "epoch",
        learning_rate=2e-5,
        per_device_train_batch_size=16,  # batch size per device during training
        per_device_eval_batch_size=64,   # batch size for evaluation
        num_train_epochs=3,
        weight_decay=0.01,
        logging_dir='./logs',
        logging_steps=10,
    )
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=lm_datasets["train"],
        eval_dataset=lm_datasets["validation"],
    )

    print('we made it this far')
    train_result = trainer.train()
    #trainer.save_model(args.model_dir) 
    #return trainer, model, train_result

if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    # Data and model checkpoints directories
    parser.add_argument(
        "--num_labels", type=int, default=2, metavar="N", help="input batch size for training (default: 64)"
    )

    parser.add_argument(
        "--batch-size", type=int, default=4, metavar="N", help="input batch size for training (default: 64)"
    )
    parser.add_argument(
        "--test-batch-size", type=int, default=1000, metavar="N", help="input batch size for testing (default: 1000)"
    )
    parser.add_argument("--epochs", type=int, default=10, metavar="N", help="number of epochs to train (default: 10)")
    parser.add_argument("--lr", type=float, default=0.01, metavar="LR", help="learning rate (default: 0.01)")
    parser.add_argument("--momentum", type=float, default=0.5, metavar="M", help="SGD momentum (default: 0.5)")
    parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
    parser.add_argument(
        "--log-interval",
        type=int,
        default=1,
        metavar="N",
        help="how many batches to wait before logging training status",
    )
    parser.add_argument(
        "--backend",
        type=str,
        default=None,
        help="backend for distributed training (tcp, gloo on cpu and gloo, nccl on gpu)",
    )

    # Container environment
    parser.add_argument("--hosts", type=list, default=json.loads(os.environ["SM_HOSTS"]))
    parser.add_argument("--current-host", type=str, default=os.environ["SM_CURRENT_HOST"])
    parser.add_argument("--model-dir", type=str, default=os.environ["SM_MODEL_DIR"])
    parser.add_argument("--train-dir", type=str, default=os.environ["SM_CHANNEL_TRAINING"])
    parser.add_argument("--valid-dir", type=str, default=os.environ["SM_CHANNEL_VALIDATION"])
    parser.add_argument("--num-gpus", type=int, default=os.environ["SM_NUM_GPUS"])
    
    #trainer.save_model()  # Saves the tokenizer too for easy upload
    #output_train_file = os.path.join(training_args.output_dir, "train_results.txt")
    #model_2_save = model.module if hasattr(model, "module") else model
    #model_2_save.save_pretrained(save_directory=args.model_dir)
    train(parser.parse_args())

Screen Shot 2021-01-08 at 7 36 22 PM

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions