Source: DeepCDR: a hybrid graph convolutional network for predicting cancer drug response.
In this repository, I implemented DeepCDR, a multimodal network designed to predict cancer drug response from IC50 values, built from scratch.
Classification Performance | Value | Regression Performance | Value |
---|---|---|---|
Cross Entropy | 3.9392 | Root Mean Square Error | 5.0984 |
Balanced Accuracy | 0.8882 | Pearson Correlation | 0.9120 |
pip install -r requirements.txt
output_dim: 100
dropout_prob: 0.1
mode: classification
seed: 42
epochs: 50
batch_size: 64
weight_decay: 1.0e-5
learning_rate: 1.0e-4
eta_min: 1.0e-6
# Enter src directory
cd src/
# Train model
python train.py
batch_size: 20
mode: classification
identifier: 01-26-2025_15-hrs
weights: highest-balanced-accuracy.pth
# Enter src directory
cd src/
# Run Inference
python inference.py
Upon running inference, a table with the results for each sample will be saved in assets/inference-tables/{model_task}/{experiment_id}/results.csv
.
Each table will contain the following fields per sample for downstream analysis:
- loss
- prediction
- target
- cell_line_id
- cancer_type
- drug_id