MCP (Model Context Protocol) server support for trackio experiment tracking
This package enables AI agents to observe and interact with trackio experiments through the Model Context Protocol (MCP). Simply import trackio_mcp
before trackio
to automatically enable MCP server functionality.
- Zero-code integration: Just import
trackio_mcp
beforetrackio
- Automatic MCP server: Enables MCP server on all trackio deployments (local & Spaces)
- Rich tool set: Exposes trackio functionality as MCP tools for AI agents
- Spaces compatible: Works seamlessly with Hugging Face Spaces deployments
- Drop-in replacement: No changes needed to existing trackio code
pip install trackio-mcp
Or with development dependencies:
pip install trackio-mcp[dev]
Simply import trackio_mcp
before importing trackio
:
import trackio_mcp # This enables MCP server functionality
import trackio as wandb
# Your existing trackio code works unchanged
wandb.init(project="my-experiment")
wandb.log({"loss": 0.1, "accuracy": 0.95})
wandb.finish()
The MCP server will be automatically available at:
- Local:
http://localhost:7860/gradio_api/mcp/sse
- Spaces:
https://your-space.hf.space/gradio_api/mcp/sse
import trackio_mcp
import trackio as wandb
# Deploy to Spaces with MCP enabled automatically
wandb.init(
project="my-experiment",
space_id="username/my-trackio-space"
)
wandb.log({"loss": 0.1})
wandb.finish()
Launch a dedicated MCP server for trackio tools:
from trackio_mcp.tools import launch_trackio_mcp_server
# Launch standalone MCP server on port 7861
launch_trackio_mcp_server(port=7861, share=False)
Once connected, AI agents can use these trackio tools:
- log: Log metrics to a trackio run
- upload_db_to_space: Upload local database to a Space
- get_projects: List all trackio projects
- get_runs: Get runs for a specific project
- filter_runs: Filter runs by name pattern
- get_run_metrics: Get metrics data for a specific run
- get_available_metrics: Get all available metric names for a project
- load_run_data: Load and process run data with optional smoothing
- get_project_summary: Get comprehensive project statistics
Human: "Show me the latest results from my 'image-classification' project"
Agent: I'll check your trackio projects and get the latest results.
[Tool: get_projects] → finds "image-classification" project
[Tool: get_runs] → gets runs for "image-classification"
[Tool: get_run_metrics] → gets metrics for latest run
[Tool: get_available_metrics] → gets metric names
Agent: Your latest image-classification run achieved 94.2% accuracy with a final loss of 0.18. The model trained for 50 epochs with best validation accuracy of 94.7% at epoch 45.
Claude Desktop
Add to ~/Library/Application Support/Claude/claude_desktop_config.json
(macOS) or equivalent:
Public Spaces:
{
"mcpServers": {
"trackio": {
"url": "https://your-space.hf.space/gradio_api/mcp/sse"
}
}
}
Private Spaces/Datasets:
{
"mcpServers": {
"trackio": {
"url": "https://your-private-space.hf.space/gradio_api/mcp/sse",
"headers": {
"Authorization": "Bearer YOUR_HF_TOKEN"
}
}
}
}
Local Development:
{
"mcpServers": {
"trackio": {
"url": "http://localhost:7860/gradio_api/mcp/sse"
}
}
}
Claude Code
See Claude Code MCP docs for more info.
Public Spaces:
claude mcp add --transport sse trackio https://your-space.hf.space/gradio_api/mcp/sse
Private Spaces/Datasets:
claude mcp add --transport sse --header "Authorization: Bearer YOUR_HF_TOKEN" trackio https://your-private-space.hf.space/gradio_api/mcp/sse
Local Development:
{
"mcpServers": {
"trackio": {
"type": "sse",
"url": "http://localhost:7860/gradio_api/mcp/sse"
}
}
}
Cursor
Add to your Cursor ~/.cursor/mcp.json
file or create .cursor/mcp.json
in your project folder. See Cursor MCP docs for more info.
Public Spaces:
{
"mcpServers": {
"trackio": {
"url": "https://your-space.hf.space/gradio_api/mcp/sse"
}
}
}
Private Spaces/Datasets:
{
"mcpServers": {
"trackio": {
"url": "https://your-private-space.hf.space/gradio_api/mcp/sse",
"headers": {
"Authorization": "Bearer YOUR_HF_TOKEN"
}
}
}
}
Local Development:
{
"mcpServers": {
"trackio": {
"url": "http://localhost:7860/gradio_api/mcp/sse"
}
}
}
Windsurf
Add to your Windsurf MCP config file. See Windsurf MCP docs for more info.
Public Spaces:
{
"mcpServers": {
"trackio": {
"serverUrl": "https://your-space.hf.space/gradio_api/mcp/sse"
}
}
}
Private Spaces/Datasets:
{
"mcpServers": {
"trackio": {
"serverUrl": "https://your-private-space.hf.space/gradio_api/mcp/sse",
"headers": {
"Authorization": "Bearer YOUR_HF_TOKEN"
}
}
}
}
Local Development:
{
"mcpServers": {
"trackio": {
"serverUrl": "http://localhost:7860/gradio_api/mcp/sse"
}
}
}
VS Code
Add to .vscode/mcp.json
. See VS Code MCP docs for more info.
Public Spaces:
{
"mcp": {
"servers": {
"trackio": {
"type": "http",
"url": "https://your-space.hf.space/gradio_api/mcp/sse"
}
}
}
}
Private Spaces/Datasets:
{
"mcp": {
"servers": {
"trackio": {
"type": "http",
"url": "https://your-private-space.hf.space/gradio_api/mcp/sse",
"headers": {
"Authorization": "Bearer YOUR_HF_TOKEN"
}
}
}
}
}
Local Development:
{
"mcp": {
"servers": {
"trackio": {
"type": "http",
"url": "http://localhost:7860/gradio_api/mcp/sse"
}
}
}
}
Gemini CLI
Add to mcp.json
in your project directory. See Gemini CLI Configuration for details.
Public Spaces:
{
"mcpServers": {
"trackio": {
"command": "npx",
"args": ["mcp-remote", "https://your-space.hf.space/gradio_api/mcp/sse"]
}
}
}
Private Spaces/Datasets:
{
"mcpServers": {
"trackio": {
"command": "npx",
"args": ["mcp-remote", "https://your-private-space.hf.space/gradio_api/mcp/sse"],
"env": {
"HF_TOKEN": "YOUR_HF_TOKEN"
}
}
}
}
Local Development:
{
"mcpServers": {
"trackio": {
"command": "npx",
"args": ["mcp-remote", "http://localhost:7860/gradio_api/mcp/sse"]
}
}
}
Cline
Create .cursor/mcp.json
(or equivalent for your IDE):
Public Spaces:
{
"mcpServers": {
"trackio": {
"url": "https://your-space.hf.space/gradio_api/mcp/sse"
}
}
}
Private Spaces/Datasets:
{
"mcpServers": {
"trackio": {
"url": "https://your-private-space.hf.space/gradio_api/mcp/sse",
"headers": {
"Authorization": "Bearer YOUR_HF_TOKEN"
}
}
}
}
Local Development:
{
"mcpServers": {
"trackio": {
"url": "http://localhost:7860/gradio_api/mcp/sse"
}
}
}
TRACKIO_DISABLE_MCP
: Set to"true"
to disable MCP functionality (default: MCP enabled)
import os
os.environ["TRACKIO_DISABLE_MCP"] = "true" # Disable MCP
import trackio_mcp # MCP won't be enabled
import trackio
trackio-mcp
uses monkey-patching to automatically:
- Enable MCP server: Sets
mcp_server=True
on all Gradio launches - Enable API: Sets
show_api=True
to expose Gradio API endpoints - Add tools: Registers additional trackio-specific MCP tools
- Preserve compatibility: No changes needed to existing trackio code
The package patches:
gradio.Blocks.launch()
- Core Gradio launch methodtrackio.ui.demo.launch()
- Trackio dashboard launches- Adds new MCP endpoints at
/gradio_api/mcp/sse
import trackio_mcp
import trackio
# Start local tracking with MCP enabled
trackio.show() # Dashboard + MCP server at http://localhost:7860
import trackio_mcp
import trackio as wandb
# Deploy to public Spaces with MCP support
wandb.init(
project="public-model",
space_id="username/model-tracking"
)
wandb.log({"epoch": 1, "loss": 0.5})
wandb.finish()
import trackio_mcp
import trackio as wandb
# Deploy to private Spaces with private dataset
wandb.init(
project="private-model",
space_id="organization/private-model-tracking", # Private space
dataset_id="organization/private-model-metrics" # Private dataset
)
wandb.log({"epoch": 1, "loss": 0.5})
wandb.finish()
# Launch standalone MCP server
trackio-mcp server --port 7861
# Check status and configuration
trackio-mcp status
# Test MCP server functionality
trackio-mcp test --url http://localhost:7860
- Private Spaces: Use HF tokens for authentication with private spaces/datasets
- Access Control: MCP server inherits trackio's access controls
- Network Security: Consider firewall rules for production deployments
- Token Management: Store HF tokens securely, use environment variables
import trackio_mcp
import trackio
# Check if MCP was disabled
import os
print("MCP Disabled:", os.getenv("TRACKIO_DISABLE_MCP"))
# Manual verification
trackio.show() # Look for MCP server URL in output
- Check URL: Ensure correct
/gradio_api/mcp/sse
endpoint - Authentication: Add Bearer token for private Spaces/datasets
- Network: Verify firewall/proxy settings
- Dependencies: Ensure
gradio[mcp]
is installed
# Test tools manually
from trackio_mcp.tools import register_trackio_tools
tools = register_trackio_tools()
tools.launch(mcp_server=True) # Test tools interface
- Fork the repository
- Install development dependencies:
pip install -e .[dev]
- Make your changes
- Run tests:
pytest
- Submit a pull request
MIT License - see LICENSE file.
- trackio - The excellent experiment tracking library
- Gradio - For built-in MCP server support
- Model Context Protocol - For the standardized AI tool protocol
Made with care for the AI research community