Skip to content

flyworker/research

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

38 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Research Repository

A comprehensive collection of research, experiments, and production-ready implementations in AI/ML agents, decentralized computing, blockchain integration, and GPU performance optimization.

🎯 Research Focus Areas

πŸ€– AI/ML Agents & Autonomous Systems

  • Autonomous Agent Architectures: Design patterns for self-managing AI agents
  • Multi-Agent Collaboration: Distributed decision-making and consensus mechanisms
  • Agent Learning & Adaptation: Reinforcement learning and knowledge management systems
  • Natural Language Processing: Advanced NLP for agent communication and reasoning
  • AI Billing & Payment Systems: Decentralized billing with cryptographic verification

🌐 Decentralized Computing & Blockchain

  • Distributed Systems Architecture: Scalable, fault-tolerant system design
  • Blockchain Integration: Smart contracts, DeFi protocols, and Web3 applications
  • IPFS Storage Solutions: Decentralized content addressing and storage
  • Decentralized Identity: Self-sovereign identity and authentication systems
  • Cross-Chain Interoperability: Multi-blockchain communication protocols

⚑ GPU Performance & LLM Optimization

  • LLM Performance Analysis: Real-time GPU profitability calculations
  • Model Optimization: Token-per-second (TPS) optimization and cost analysis
  • GPU Resource Management: Multi-GPU configurations and cost optimization
  • Cloud GPU Integration: Nebula Block and other cloud GPU providers

πŸ“ Project Structure

research/
β”œβ”€β”€ agent/                           # AI Agent Research & Documentation
β”‚   β”œβ”€β”€ AI_Billing_Agent_Pipeline.md     # Implementation pipeline for AI billing agents
β”‚   β”œβ”€β”€ Future_of_AI_Billing_Agent.md    # Future research directions and roadmap
β”‚   └── Research_Roadmap.md              # Comprehensive research roadmap and phases
β”œβ”€β”€ sample_code/                     # Production-Ready Implementations
β”‚   β”œβ”€β”€ blockchain/                  # Ethereum blockchain utilities
β”‚   β”‚   β”œβ”€β”€ eth_helper.py            # Ethereum node health checker
β”‚   β”‚   β”œβ”€β”€ README.md                # Blockchain documentation
β”‚   β”‚   └── requirements.txt         # Blockchain dependencies
β”‚   β”œβ”€β”€ llm_perfomance/             # LLM Performance Calculator
β”‚   β”‚   β”œβ”€β”€ gpu_profit_calculator.py     # Main FastAPI application
β”‚   β”‚   β”œβ”€β”€ gpu_profit_calculator_clean.py # Clean version
β”‚   β”‚   β”œβ”€β”€ update_model_pricing.py      # Model pricing updates
β”‚   β”‚   β”œβ”€β”€ update_openrouter_pricing.py # OpenRouter integration
β”‚   β”‚   β”œβ”€β”€ scripts/                     # Database and utility scripts
β”‚   β”‚   β”œβ”€β”€ docs/                        # Comprehensive documentation
β”‚   β”‚   β”œβ”€β”€ templates/                   # Web interface templates
β”‚   β”‚   └── requirements.txt             # LLM calculator dependencies
β”‚   β”œβ”€β”€ mcp_nebula_block/            # MCP Server for Nebula Block
β”‚   β”‚   β”œβ”€β”€ src/mcp_server_nebula_block/ # MCP server implementation
β”‚   β”‚   β”œβ”€β”€ Dockerfile                    # Container configuration
β”‚   β”‚   β”œβ”€β”€ pyproject.toml                # Project configuration
β”‚   β”‚   └── README.md                     # MCP server documentation
β”‚   β”œβ”€β”€ nebula_block_storage/        # Nebula Block Object Storage
β”‚   β”‚   β”œβ”€β”€ nebula_block_example.py      # S3-compatible storage client
β”‚   β”‚   β”œβ”€β”€ config.py                     # Configuration management
β”‚   β”‚   β”œβ”€β”€ requirements.txt              # Storage dependencies
β”‚   β”‚   └── README.md                     # Storage documentation
β”‚   β”œβ”€β”€ team_billing/                # Team Billing API
β”‚   β”‚   β”œβ”€β”€ server.py                     # FastAPI team billing application
β”‚   β”‚   β”œβ”€β”€ test_server.py                # Testing utilities
β”‚   β”‚   β”œβ”€β”€ Dockerfile                    # Container configuration
β”‚   β”‚   β”œβ”€β”€ requirements.txt              # Billing dependencies
β”‚   β”‚   └── readme.md                     # Billing documentation
β”‚   └── webhook/                     # Webhook Integration Server
β”‚       β”œβ”€β”€ webhook_server.py            # Main webhook server
β”‚       β”œβ”€β”€ developer_server.py          # Developer verification server
β”‚       β”œβ”€β”€ mock_mission_request.py      # Mock request utilities
β”‚       β”œβ”€β”€ requirements.txt             # Webhook dependencies
β”‚       └── readme.md                    # Webhook documentation
β”œβ”€β”€ LICENSE                          # Project license
└── README.md                        # This file

πŸš€ Quick Start

Prerequisites

  • Python 3.8+
  • Git
  • Docker (optional, for containerized deployments)

Installation

  1. Clone the repository:

    git clone https://github.com/flyworker/research.git
    cd research
  2. Set up Python environment:

    python -m venv venv
    source venv/bin/activate  # On Unix/macOS
    # or
    .\venv\Scripts\activate   # On Windows
  3. Install project dependencies:

    # Install dependencies for specific components as needed
    pip install -r sample_code/[component]/requirements.txt

Run a component

  • LLM Performance Calculator:

    cd sample_code/llm_perfomance
    pip install -r requirements.txt
    python gpu_profit_calculator.py  # http://localhost:8001
  • Team Billing API:

    cd sample_code/team_billing
    pip install -r requirements.txt
    python server.py  # http://localhost:8000
  • Webhook Server:

    cd sample_code/webhook
    pip install -r requirements.txt
    export ACCESS_TOKEN=demo-access-token  # optional; defaults to this value
    python webhook_server.py  # http://localhost:8000
  • Ethereum Blockchain Helper:

    cd sample_code/blockchain
    pip install -r requirements.txt
    python eth_helper.py
  • Nebula Block Storage Example:

    cd sample_code/nebula_block_storage
    pip install -r requirements.txt
    cp sample_env .env && $EDITOR .env
    python nebula_block_example.py
  • MCP Nebula Block server: See sample_code/mcp_nebula_block/README.md for UV/Docker usage.

πŸ—οΈ Architecture Overview

AI Agent Systems

  • Autonomous Architecture: Self-managing agents with state persistence
  • Multi-Agent Communication: Event-driven communication protocols
  • Learning & Adaptation: Reinforcement learning with memory systems
  • Decentralized Billing: Cryptographic payment verification systems

Blockchain Integration

  • Ethereum Node Health: Comprehensive RPC endpoint testing
  • Smart Contract Integration: DeFi protocol interactions
  • Cross-Chain Operations: Multi-blockchain support
  • Web3 Security: Secure transaction handling and verification

GPU Performance Optimization

  • Real-time Profitability: Live GPU cost-benefit analysis
  • Multi-GPU Support: H100, A100, RTX 3090, RTX 3080 configurations
  • Model Optimization: TPS calculations and cost optimization
  • Cloud Integration: Nebula Block and other cloud GPU providers

Decentralized Storage

  • IPFS Integration: Content-addressed storage solutions
  • S3-Compatible APIs: Nebula Block object storage
  • Data Persistence: Distributed data management
  • Content Addressing: Immutable data references

πŸ“š Documentation

Research Documentation

Implementation Guides

πŸ”§ Core Components

LLM Performance Calculator (sample_code/llm_perfomance/)

FastAPI-based GPU profitability analysis system

  • Real-time profit/loss calculations for LLM inference
  • Multi-GPU support (H100, A100, RTX 3090, RTX 3080)
  • Model database with pricing and TPS data
  • OpenRouter API integration for live pricing
  • SQLite database with comprehensive model configurations

Key Features:

  • GPU cost optimization and comparison
  • Model performance analysis
  • Real-time pricing updates
  • Web-based interface with settings management

Blockchain Utilities (sample_code/blockchain/)

Ethereum blockchain interaction and health monitoring

  • Comprehensive RPC endpoint testing
  • Network identification and chain ID verification
  • Wallet balance and block information queries
  • RPC method validation and health reporting

Key Features:

  • Multi-network support (Mainnet, Testnet, etc.)
  • Detailed health reports with broken function detection
  • Wallet balance monitoring
  • Block information retrieval

Team Billing API (sample_code/team_billing/)

FastAPI team management and billing system

  • Team creation and member management
  • Usage tracking and resource monitoring
  • Invoice generation and payment processing
  • SQLModel ORM with SQLite database

Key Features:

  • Team invitation system
  • Usage-based billing calculations
  • Invoice generation and management
  • RESTful API with comprehensive endpoints

Webhook Integration (sample_code/webhook/)

Event-driven webhook server for agent communication

  • User verification endpoints
  • Developer verification with enhanced features
  • Health monitoring and status checking
  • Bearer token authentication

Key Features:

  • Verification request/response models
  • Developer-specific verification workflows
  • Health check endpoints
  • Mock request utilities for testing

Nebula Block Storage (sample_code/nebula_block_storage/)

S3-compatible object storage client

  • File upload and download operations
  • Bucket listing and management
  • Presigned URL generation
  • Environment-based configuration

Key Features:

  • S3-compatible API interface
  • Secure file operations
  • Temporary access URL generation
  • Comprehensive error handling

MCP Nebula Block (sample_code/mcp_nebula_block/)

Model Context Protocol server for GPU resources

  • GPU instance discovery and management
  • Region-based GPU filtering
  • GPU type-specific queries
  • FastMCP server implementation

Key Features:

  • GPU resource enumeration
  • Regional availability checking
  • GPU type filtering
  • MCP protocol compliance

🎯 Research Goals

This repository serves as a comprehensive platform for:

Phase 1: Foundation (Q2 2024)

  • Autonomous agent architecture design and implementation
  • Basic blockchain integration and smart contract development
  • IPFS implementation and content addressing strategies
  • Agent learning systems and adaptation mechanisms

Phase 2: Advanced Features (Q3 2024)

  • Multi-agent collaboration and consensus mechanisms
  • Distributed decision-making and conflict resolution
  • Decentralized identity management and authentication
  • Advanced agent communication protocols

Phase 3: Integration & Scaling (Q4 2024)

  • Cross-platform integration and API standardization
  • Performance optimization and caching mechanisms
  • AI agent marketplace architecture
  • Advanced scaling strategies

Phase 4: Production & Deployment (Q1 2025)

  • Security hardening and audit mechanisms
  • Monitoring systems and maintenance procedures
  • Production deployment strategies
  • Support processes and documentation

πŸ› οΈ Development

Technology Stack

  • Backend: FastAPI, SQLModel, SQLite, PostgreSQL
  • Blockchain: Web3.py, Ethereum, Smart Contracts
  • Storage: IPFS, S3-compatible APIs, Nebula Block
  • GPU: CUDA, PyTorch, TensorFlow, Cloud GPU providers
  • Deployment: Docker, Uvicorn, ASGI servers

Development Guidelines

  • Follow FastAPI best practices for API development
  • Use async/await patterns for I/O operations
  • Implement comprehensive error handling
  • Maintain type hints throughout the codebase
  • Write comprehensive documentation for all components

🀝 Contributing

We welcome contributions from researchers, developers, and enthusiasts! This is a research-focused repository, and we encourage:

Contribution Areas

  • Research Findings: Share new discoveries and insights
  • Sample Implementations: Contribute working examples
  • Documentation: Improve guides and tutorials
  • Bug Fixes: Help maintain code quality
  • Feature Requests: Suggest new research directions

Contribution Process

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Research Collaboration

  • Share research findings and methodologies
  • Collaborate on experimental implementations
  • Discuss innovative approaches to AI agent development
  • Contribute to the research roadmap

πŸ“„ License

This project is licensed under the terms included in the LICENSE file. All research findings and implementations are shared for educational and research purposes.

πŸ”— External Resources

πŸ“Š Project Status

  • Research Phase: Active development across all focus areas
  • Documentation: Comprehensive guides and tutorials available
  • Implementations: Production-ready examples for all major components
  • Community: Open for contributions and collaboration

Built with ❀️ for the AI/ML and blockchain research community

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published