Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions common/common.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1020,10 +1020,11 @@ llama_token llama_sample_token(
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
llama_sample_top_k (ctx, &cur_p, top_k, 1);
llama_sample_tail_free (ctx, &cur_p, tfs_z, 1);
llama_sample_typical (ctx, &cur_p, typical_p, 1);
llama_sample_top_p (ctx, &cur_p, top_p, 1);
size_t min_keep = std::max(1, params.n_probs);
llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
llama_sample_temp(ctx, &cur_p, temp);

{
Expand Down
94 changes: 8 additions & 86 deletions examples/server/server.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -534,98 +534,20 @@ struct llama_server_context
return result;
}

// out of user input, sample next token
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(model) : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
const float repeat_penalty = params.repeat_penalty;
const float alpha_presence = params.presence_penalty;
const float alpha_frequency = params.frequency_penalty;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
const int32_t n_probs = params.n_probs;

{
auto *logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(model);

// Apply params.logit_bias map
for (const auto &it : params.logit_bias)
{
logits[it.first] += it.second;
}

// out of user input, sample next token
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++)
{
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
candidates.reserve(llama_n_vocab(model));

llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};

// Apply penalties
float nl_logit = logits[llama_token_nl(ctx)];
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
llama_sample_repetition_penalty(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl)
{
logits[llama_token_nl(ctx)] = nl_logit;
}
result.tok = llama_sample_token(ctx, NULL, grammar, params, last_n_tokens, candidates);

if (grammar != nullptr) {
llama_sample_grammar(ctx, &candidates_p, grammar);
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };

if (temp <= 0)
{
// Greedy sampling
result.tok = llama_sample_token_greedy(ctx, &candidates_p);
if (n_probs > 0)
{
llama_sample_softmax(ctx, &candidates_p);
}
}
else
const int32_t n_probs = params.n_probs;
if (params.temp <= 0 && n_probs > 0)
{
if (mirostat == 1)
{
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temp(ctx, &candidates_p, temp);
result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
}
else if (mirostat == 2)
{
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temp(ctx, &candidates_p, temp);
result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
}
else
{
// Temperature sampling
size_t min_keep = std::max(1, n_probs);
llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
llama_sample_temp(ctx, &candidates_p, temp);
result.tok = llama_sample_token(ctx, &candidates_p);
}
}

if (grammar != nullptr) {
llama_grammar_accept_token(ctx, grammar, result.tok);
// For llama_sample_token_greedy we need to sort candidates
llama_sample_softmax(ctx, &candidates_p);
}

for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
Expand Down