Skip to content

https-deeplearning-ai/starting-ragchatbot-codebase

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Course Materials RAG System

A Retrieval-Augmented Generation (RAG) system designed to answer questions about course materials using semantic search and AI-powered responses.

Overview

This application is a full-stack web application that enables users to query course materials and receive intelligent, context-aware responses. It uses ChromaDB for vector storage, Anthropic's Claude for AI generation, and provides a web interface for interaction.

Prerequisites

  • Python 3.13 or higher
  • uv (Python package manager)
  • An Anthropic API key (for Claude AI)
  • For Windows: Use Git Bash to run the application commands - Download Git for Windows

Installation

  1. Install uv (if not already installed)

    curl -LsSf https://astral.sh/uv/install.sh | sh
  2. Install Python dependencies

    uv sync
  3. Set up environment variables

    Create a .env file in the root directory:

    ANTHROPIC_API_KEY=your_anthropic_api_key_here

Running the Application

Quick Start

Use the provided shell script:

chmod +x run.sh
./run.sh

Manual Start

cd backend
uv run uvicorn app:app --reload --port 8000

The application will be available at:

  • Web Interface: http://localhost:8000
  • API Documentation: http://localhost:8000/docs

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published