Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion chapters/en/chapter7/2.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ The first application we'll explore is token classification. This generic task e

Of course, there are many other types of token classification problem; those are just a few representative examples. In this section, we will fine-tune a model (BERT) on a NER task, which will then be able to compute predictions like this one:

<iframe src="https://hf.space/gradioiframe/course-demos/bert-finetuned-ner/+" frameBorder="0" height="350" title="Gradio app" class="block dark:hidden container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
<iframe src="https://course-demos-bert-finetuned-ner.hf.space" frameBorder="0" height="350" title="Gradio app" class="block dark:hidden container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

works


<a class="flex justify-center" href="/huggingface-course/bert-finetuned-ner">
<img class="block dark:hidden lg:w-3/5" src="https://huggingface.co/datasets/huggingface-course/documentation-images/resolve/main/en/chapter7/model-eval-bert-finetuned-ner.png" alt="One-hot encoded labels for question answering."/>
Expand Down
2 changes: 1 addition & 1 deletion chapters/en/chapter7/3.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ This process of fine-tuning a pretrained language model on in-domain data is usu

By the end of this section you'll have a [masked language model](https://huggingface.co/huggingface-course/distilbert-base-uncased-finetuned-imdb?text=This+is+a+great+%5BMASK%5D.) on the Hub that can autocomplete sentences as shown below:

<iframe src="https://hf.space/gradioiframe/course-demos/distilbert-base-uncased-finetuned-imdb/+" frameBorder="0" height="300" title="Gradio app" class="block dark:hidden container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
<iframe src="https://course-demos-distilbert-base-uncased-finetune-7400b54.hf.space" frameBorder="0" height="300" title="Gradio app" class="block dark:hidden container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>

Let's dive in!

Expand Down
2 changes: 1 addition & 1 deletion chapters/en/chapter7/4.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ In this section, we will fine-tune a Marian model pretrained to translate from E

Once we're finished, we will have a model able to make predictions like this one:

<iframe src="https://hf.space/gradioiframe/course-demos/marian-finetuned-kde4-en-to-fr/+" frameBorder="0" height="350" title="Gradio app" class="block dark:hidden container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
<iframe src="https://course-demos-marian-finetuned-kde4-en-to-fr.hf.space" frameBorder="0" height="350" title="Gradio app" class="block dark:hidden container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

works


<a class="flex justify-center" href="/huggingface-course/marian-finetuned-kde4-en-to-fr">
<img class="block dark:hidden lg:w-3/5" src="https://huggingface.co/datasets/huggingface-course/documentation-images/resolve/main/en/chapter7/modeleval-marian-finetuned-kde4-en-to-fr.png" alt="One-hot encoded labels for question answering."/>
Expand Down
2 changes: 1 addition & 1 deletion chapters/en/chapter7/5.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ In this section we'll take a look at how Transformer models can be used to conde

Although there already exist various fine-tuned models for summarization on the [Hugging Face Hub](https://huggingface.co/models?pipeline_tag=summarization&sort=downloads), almost all of these are only suitable for English documents. So, to add a twist in this section, we'll train a bilingual model for English and Spanish. By the end of this section, you'll have a [model](https://huggingface.co/huggingface-course/mt5-small-finetuned-amazon-en-es) that can summarize customer reviews like the one shown here:

<iframe src="https://hf.space/gradioiframe/course-demos/mt5-small-finetuned-amazon-en-es/+" frameBorder="0" height="400" title="Gradio app" class="block dark:hidden container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
<iframe src="https://course-demos-mt5-small-finetuned-amazon-en-es.hf.space" frameBorder="0" height="400" title="Gradio app" class="block dark:hidden container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

works


As we'll see, these summaries are concise because they're learned from the titles that customers provide in their product reviews. Let's start by putting together a suitable bilingual corpus for this task.

Expand Down
2 changes: 1 addition & 1 deletion chapters/en/chapter7/6.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ In this section we will build a scaled-down version of a code generation model:

In [Chapter 6](/course/chapter6) we created an efficient tokenizer to process Python source code, but what we still need is a large-scale dataset to pretrain a model on. Here, we'll apply our tokenizer to a corpus of Python code derived from GitHub repositories. We will then use the `Trainer` API and 🤗 Accelerate to train the model. Let's get to it!

<iframe src="https://hf.space/gradioiframe/course-demos/codeparrot-ds/+" frameBorder="0" height="300" title="Gradio app" class="block dark:hidden container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
<iframe src="https://course-demos-codeparrot-ds.hf.space" frameBorder="0" height="300" title="Gradio app" class="block dark:hidden container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

works


This is actually showcasing the model that was trained and uploaded to the Hub using the code shown in this section. You can find it [here](https://huggingface.co/huggingface-course/codeparrot-ds?text=plt.imshow%28). Note that since there is some randomization happening in the text generation, you will probably get a slightly different result.

Expand Down
2 changes: 1 addition & 1 deletion chapters/en/chapter7/7.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ Time to look at question answering! This task comes in many flavors, but the one

We will fine-tune a BERT model on the [SQuAD dataset](https://rajpurkar.github.io/SQuAD-explorer/), which consists of questions posed by crowdworkers on a set of Wikipedia articles. This will give us a model able to compute predictions like this one:

<iframe src="https://hf.space/gradioiframe/course-demos/bert-finetuned-squad/+" frameBorder="0" height="450" title="Gradio app" class="block dark:hidden container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
<iframe src="https://course-demos-bert-finetuned-squad.hf.space" frameBorder="0" height="450" title="Gradio app" class="block dark:hidden container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

works


This is actually showcasing the model that was trained and uploaded to the Hub using the code shown in this section. You can find it and double-check the predictions [here](https://huggingface.co/huggingface-course/bert-finetuned-squad?context=%F0%9F%A4%97+Transformers+is+backed+by+the+three+most+popular+deep+learning+libraries+%E2%80%94+Jax%2C+PyTorch+and+TensorFlow+%E2%80%94+with+a+seamless+integration+between+them.+It%27s+straightforward+to+train+your+models+with+one+before+loading+them+for+inference+with+the+other.&question=Which+deep+learning+libraries+back+%F0%9F%A4%97+Transformers%3F).

Expand Down
6 changes: 3 additions & 3 deletions chapters/en/chapter9/1.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -20,15 +20,15 @@ Here are some examples of machine learning demos built with Gradio:

* A **sketch recognition** model that takes in a sketch and outputs labels of what it thinks is being drawn:

<iframe src="https://hf.space/gradioiframe/course-demos/draw2/+" frameBorder="0" height="450" title="Gradio app" class="container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
<iframe src="https://course-demos-draw2.hf.space" frameBorder="0" height="450" title="Gradio app" class="container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

works


* An extractive **question answering** model that takes in a context paragraph and a quest and outputs a response and a probability score (we discussed this kind of model [in Chapter 7](/course/chapter7/7)):

<iframe src="https://hf.space/gradioiframe/course-demos/question-answering-simple/+" frameBorder="0" height="640" title="Gradio app" class="container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
<iframe src="https://course-demos-question-answering-simple.hf.space" frameBorder="0" height="640" title="Gradio app" class="container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

works


* A **background removal** model that takes in an image and outputs the image with the background removed:

<iframe src="https://hf.space/gradioiframe/course-demos/remove-bg-original/+" frameBorder="0" height="640" title="Gradio app" class="container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
<iframe src="https://course-demos-remove-bg-original.hf.space" frameBorder="0" height="640" title="Gradio app" class="container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

works


This chapter is broken down into sections which include both _concepts_ and _applications_. After you learn the concept in each section, you'll apply it to build a particular kind of demo, ranging from image classification to speech recognition. By the time you finish this chapter, you'll be able to build these demos (and many more!) in just a few lines of Python code.

Expand Down
Loading