Skip to content

Potential RMSNorm precision issue #33133

@void-main

Description

@void-main

System Info

  • transformers version: 4.44.1
  • Platform: Linux-5.15.0-88-generic-x86_64-with-glibc2.35
  • Python version: 3.10.12
  • Huggingface_hub version: 0.24.6
  • Safetensors version: 0.4.4
  • Accelerate version: not installed
  • Accelerate config: not found
  • PyTorch version (GPU?): 2.4.0a0+f70bd71a48.nv24.06 (True)
  • Tensorflow version (GPU?): not installed (NA)
  • Flax version (CPU?/GPU?/TPU?): not installed (NA)
  • Jax version: not installed
  • JaxLib version: not installed
  • Using distributed or parallel set-up in script?: distributed
  • Using GPU in script?: YES

Who can help?

@ArthurZucker

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • An officially supported task in the examples folder (such as GLUE/SQuAD, ...)
  • My own task or dataset (give details below)

Reproduction

There's a implementation difference between HF transformers' RMSNorm and Nvidia transformer_engine's RMSNorm.

Version: transformer-engine 1.7.0+4e7caa1

First define HFRMSNorm code, which is copied from modeling_llama implementation from transformers library.

import torch
from torch import nn

class HFRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6, config=None):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

Next, run the test code:

import unittest
import torch
import torch.nn as nn
from transformer_engine.pytorch.module.rmsnorm import RMSNorm as TELayerNorm
from copy_from_hf import HFRMSNorm

class TestLayerNormComparison(unittest.TestCase):
    def setUp(self):
        self.hidden_size = 4096
        self.batch_size = 1
        self.seq_length = 1024
        self.eps = 1e-5

        self.shared_weight = nn.Parameter(torch.randn(self.hidden_size, dtype=torch.bfloat16))

        self.te_layernorm = TELayerNorm(self.hidden_size, eps=self.eps, zero_centered_gamma=False).to(torch.bfloat16)
        self.hf_rmsnorm = HFRMSNorm(self.hidden_size, eps=self.eps).to(torch.bfloat16)

        self.te_layernorm.weight = self.shared_weight
        self.hf_rmsnorm.weight = self.shared_weight

        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.te_layernorm.to(self.device)
        self.hf_rmsnorm.to(self.device)

    def test_layernorm_comparison(self):
        input_tensor = torch.randn(self.batch_size, self.seq_length, self.hidden_size,
                                   dtype=torch.bfloat16, device=self.device)

        with torch.no_grad():
            te_output = self.te_layernorm(input_tensor)
            hf_output = self.hf_rmsnorm(input_tensor)

        assert torch.allclose(te_output, hf_output, atol=1e-2)

if __name__ == '__main__':
    unittest.main()

The assertion will fail.

Expected behavior

If we change the last line of HFRMSNorm from return self.weight * hidden_states.to(input_dtype) to return (self.weight.to(torch.float32) * hidden_states).to(input_dtype), the assertion should pass.

We have a discussion here, and I agree that we should all internal computation in FP32. So what's your opinion on HF side?

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions