-
Couldn't load subscription status.
- Fork 31k
Closed
Labels
Description
With:
Issue seen on NVidia A10 and Intel PVC.
test_pt_flax_equivalence and test_encoder_decoder_model_standalone are failing across multiple models due to missing models or tensors placements on devices. Specifically, there are 3 types of issues:
- Model was not moved to device (
model.to(cuda)is missing) - Input was not moved to device (
input.to(cuda)is missing) torch.Tensor.numpy()called with tensor being on device (should first be moved to CPU according to https://pytorch.org/docs/2.4/generated/torch.Tensor.numpy.html)
Proposed fix:
CC: @sanchit-gandhi, @amyeroberts
See the following log for repro cmdline and list of errors (log running on NVidia A10, for XPU log will be similar):
$ python3 -m pytest --tb=short \
tests/models/informer/test_modeling_informer.py::InformerModelTest::test_encoder_decoder_model_standalone \
tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py::FlaxGPT2EncoderDecoderModelTest::test_pt_flax_equivalence \
tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py::FlaxBartEncoderDecoderModelTest::test_pt_flax_equivalence \
tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py::FlaxBertEncoderDecoderModelTest::test_pt_flax_equivalence \
tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py::ViTBertModelTest::test_pt_flax_equivalence \
tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py::CLIPVisionBertModelTest::test_pt_flax_equivalence \
tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py::FlaxWav2Vec2GPT2ModelTest::test_pt_flax_equivalence \
tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py::FlaxWav2Vec2BartModelTest::test_pt_flax_equivalence \
tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py::FlaxWav2Vec2BertModelTest::test_pt_flax_equivalence \
tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py::FlaxViTBertModelTest::test_pt_flax_equivalence tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py::FlaxCLIPVisionBertModelTest::test_pt_flax_equivalence \
tests/models/vision_encoder_decoder/test_modeling_flax_vision_encoder_decoder.py::FlaxViT2GPT2EncoderDecoderModelTest::test_pt_flax_equivalence
========================================================================================= test session starts =========================================================================================
platform linux -- Python 3.10.12, pytest-7.4.4, pluggy-1.5.0
rootdir: /home/dvrogozh/git/huggingface/transformers
configfile: pyproject.toml
plugins: hypothesis-6.111.1, subtests-0.13.1, rich-0.1.1, dash-2.17.1, xdist-3.6.1, pspec-0.0.4, timeout-2.3.1
collected 12 items
tests/models/informer/test_modeling_informer.py F [ 8%]
tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py FFF [ 33%]
tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py FF [ 50%]
tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py FFF [ 75%]
tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py FF [ 91%]
tests/models/vision_encoder_decoder/test_modeling_flax_vision_encoder_decoder.py F [100%]
============================================================================================== FAILURES ===============================================================================================
_______________________________________________________________________ InformerModelTest.test_encoder_decoder_model_standalone _______________________________________________________________________
tests/models/informer/test_modeling_informer.py:226: in test_encoder_decoder_model_standalone
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
tests/models/informer/test_modeling_informer.py:174: in check_encoder_decoder_model_standalone
self.parent.assertTrue(torch.equal(model.encoder.embed_positions.weight, embed_positions.weight))
E RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument other in method wrapper_CUDA__equal)
______________________________________________________________________ FlaxGPT2EncoderDecoderModelTest.test_pt_flax_equivalence _______________________________________________________________________
tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py:413: in test_pt_flax_equivalence
self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict)
tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py:344: in check_equivalence_pt_to_flax
self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)
tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py:303: in check_pt_flax_equivalence
pt_outputs = pt_model(**pt_inputs).to_tuple()
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/encoder_decoder/modeling_encoder_decoder.py:597: in forward
encoder_outputs = self.encoder(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/bert/modeling_bert.py:1077: in forward
embedding_output = self.embeddings(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/bert/modeling_bert.py:210: in forward
inputs_embeds = self.word_embeddings(input_ids)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/sparse.py:190: in forward
return F.embedding(
../../pytorch/pytorch/torch/nn/functional.py:2551: in embedding
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
E RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument index in method wrapper_CUDA__index_select)
______________________________________________________________________ FlaxBartEncoderDecoderModelTest.test_pt_flax_equivalence _______________________________________________________________________
tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py:413: in test_pt_flax_equivalence
self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict)
tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py:344: in check_equivalence_pt_to_flax
self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)
tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py:303: in check_pt_flax_equivalence
pt_outputs = pt_model(**pt_inputs).to_tuple()
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/encoder_decoder/modeling_encoder_decoder.py:597: in forward
encoder_outputs = self.encoder(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/bert/modeling_bert.py:1077: in forward
embedding_output = self.embeddings(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/bert/modeling_bert.py:210: in forward
inputs_embeds = self.word_embeddings(input_ids)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/sparse.py:190: in forward
return F.embedding(
../../pytorch/pytorch/torch/nn/functional.py:2551: in embedding
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
E RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument index in method wrapper_CUDA__index_select)
---------------------------------------------------------------------------------------- Captured stderr call -----------------------------------------------------------------------------------------
Config of the decoder: <class 'transformers.models.bart.modeling_bart.BartForCausalLM'> is overwritten by shared decoder config: BartConfig {
"activation_dropout": 0.0,
"activation_function": "gelu",
"add_cross_attention": true,
"attention_dropout": 0.1,
"bos_token_id": 0,
"classifier_dropout": 0.0,
"d_model": 32,
"decoder_attention_heads": 4,
"decoder_ffn_dim": 4,
"decoder_layerdrop": 0.0,
"decoder_layers": 2,
"decoder_start_token_id": 2,
"dropout": 0.1,
"encoder_attention_heads": 4,
"encoder_ffn_dim": 4,
"encoder_layerdrop": 0.0,
"encoder_layers": 2,
"eos_token_id": 2,
"forced_eos_token_id": 2,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1",
"2": "LABEL_2"
},
"init_std": 0.02,
"initializer_range": 0.02,
"is_decoder": true,
"is_encoder_decoder": true,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1,
"LABEL_2": 2
},
"max_position_embeddings": 32,
"model_type": "bart",
"num_hidden_layers": 2,
"pad_token_id": 1,
"scale_embedding": false,
"transformers_version": "4.45.0.dev0",
"use_cache": false,
"vocab_size": 99
}
______________________________________________________________________ FlaxBertEncoderDecoderModelTest.test_pt_flax_equivalence _______________________________________________________________________
tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py:413: in test_pt_flax_equivalence
self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict)
tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py:344: in check_equivalence_pt_to_flax
self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)
tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py:303: in check_pt_flax_equivalence
pt_outputs = pt_model(**pt_inputs).to_tuple()
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/encoder_decoder/modeling_encoder_decoder.py:597: in forward
encoder_outputs = self.encoder(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/bert/modeling_bert.py:1077: in forward
embedding_output = self.embeddings(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/bert/modeling_bert.py:210: in forward
inputs_embeds = self.word_embeddings(input_ids)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/sparse.py:190: in forward
return F.embedding(
../../pytorch/pytorch/torch/nn/functional.py:2551: in embedding
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
E RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument index in method wrapper_CUDA__index_select)
______________________________________________________________________________ ViTBertModelTest.test_pt_flax_equivalence ______________________________________________________________________________
tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py:266: in test_pt_flax_equivalence
self.check_equivalence_pt_to_flax(vision_config, text_config, inputs_dict)
tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py:226: in check_equivalence_pt_to_flax
self.check_pt_flax_equivalence(pt_model, fx_model, **inputs_dict)
tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py:182: in check_pt_flax_equivalence
flax_inputs = {k: v.numpy() for k, v in pt_inputs.items()}
tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py:182: in <dictcomp>
flax_inputs = {k: v.numpy() for k, v in pt_inputs.items()}
E TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
__________________________________________________________________________ CLIPVisionBertModelTest.test_pt_flax_equivalence ___________________________________________________________________________
tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py:266: in test_pt_flax_equivalence
self.check_equivalence_pt_to_flax(vision_config, text_config, inputs_dict)
tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py:226: in check_equivalence_pt_to_flax
self.check_pt_flax_equivalence(pt_model, fx_model, **inputs_dict)
tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py:182: in check_pt_flax_equivalence
flax_inputs = {k: v.numpy() for k, v in pt_inputs.items()}
tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py:182: in <dictcomp>
flax_inputs = {k: v.numpy() for k, v in pt_inputs.items()}
E TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
_________________________________________________________________________ FlaxWav2Vec2GPT2ModelTest.test_pt_flax_equivalence __________________________________________________________________________
tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py:532: in test_pt_flax_equivalence
self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict)
tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py:459: in check_equivalence_pt_to_flax
self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)
tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py:418: in check_pt_flax_equivalence
pt_outputs = pt_model(**pt_inputs).to_tuple()
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py:501: in forward
encoder_outputs = self.encoder(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/wav2vec2/modeling_wav2vec2.py:1809: in forward
extract_features = self.feature_extractor(input_values)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/wav2vec2/modeling_wav2vec2.py:463: in forward
hidden_states = conv_layer(hidden_states)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/wav2vec2/modeling_wav2vec2.py:332: in forward
hidden_states = self.conv(hidden_states)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/conv.py:375: in forward
return self._conv_forward(input, self.weight, self.bias)
../../pytorch/pytorch/torch/nn/modules/conv.py:370: in _conv_forward
return F.conv1d(
E RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
_________________________________________________________________________ FlaxWav2Vec2BartModelTest.test_pt_flax_equivalence __________________________________________________________________________
tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py:532: in test_pt_flax_equivalence
self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict)
tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py:459: in check_equivalence_pt_to_flax
self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)
tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py:418: in check_pt_flax_equivalence
pt_outputs = pt_model(**pt_inputs).to_tuple()
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py:501: in forward
encoder_outputs = self.encoder(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/wav2vec2/modeling_wav2vec2.py:1809: in forward
extract_features = self.feature_extractor(input_values)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/wav2vec2/modeling_wav2vec2.py:463: in forward
hidden_states = conv_layer(hidden_states)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/wav2vec2/modeling_wav2vec2.py:332: in forward
hidden_states = self.conv(hidden_states)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/conv.py:375: in forward
return self._conv_forward(input, self.weight, self.bias)
../../pytorch/pytorch/torch/nn/modules/conv.py:370: in _conv_forward
return F.conv1d(
E RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
---------------------------------------------------------------------------------------- Captured stderr call -----------------------------------------------------------------------------------------
Config of the decoder: <class 'transformers.models.bart.modeling_bart.BartForCausalLM'> is overwritten by shared decoder config: BartConfig {
"activation_dropout": 0.0,
"activation_function": "gelu",
"add_cross_attention": true,
"attention_dropout": 0.1,
"bos_token_id": 0,
"classifier_dropout": 0.0,
"d_model": 24,
"decoder_attention_heads": 4,
"decoder_ffn_dim": 4,
"decoder_layerdrop": 0.0,
"decoder_layers": 2,
"decoder_start_token_id": 2,
"dropout": 0.1,
"encoder_attention_heads": 4,
"encoder_ffn_dim": 4,
"encoder_layerdrop": 0.0,
"encoder_layers": 2,
"eos_token_id": 2,
"forced_eos_token_id": 2,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1",
"2": "LABEL_2"
},
"init_std": 0.02,
"initializer_range": 0.02,
"is_decoder": true,
"is_encoder_decoder": true,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1,
"LABEL_2": 2
},
"max_position_embeddings": 32,
"model_type": "bart",
"num_hidden_layers": 2,
"pad_token_id": 1,
"scale_embedding": false,
"transformers_version": "4.45.0.dev0",
"use_cache": false,
"vocab_size": 99
}
_________________________________________________________________________ FlaxWav2Vec2BertModelTest.test_pt_flax_equivalence __________________________________________________________________________
tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py:532: in test_pt_flax_equivalence
self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict)
tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py:459: in check_equivalence_pt_to_flax
self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)
tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py:418: in check_pt_flax_equivalence
pt_outputs = pt_model(**pt_inputs).to_tuple()
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py:501: in forward
encoder_outputs = self.encoder(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/wav2vec2/modeling_wav2vec2.py:1809: in forward
extract_features = self.feature_extractor(input_values)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/wav2vec2/modeling_wav2vec2.py:463: in forward
hidden_states = conv_layer(hidden_states)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/wav2vec2/modeling_wav2vec2.py:332: in forward
hidden_states = self.conv(hidden_states)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/conv.py:375: in forward
return self._conv_forward(input, self.weight, self.bias)
../../pytorch/pytorch/torch/nn/modules/conv.py:370: in _conv_forward
return F.conv1d(
E RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
____________________________________________________________________________ FlaxViTBertModelTest.test_pt_flax_equivalence ____________________________________________________________________________
tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py:243: in test_pt_flax_equivalence
self.check_equivalence_pt_to_flax(vision_config, text_config, inputs_dict)
tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py:207: in check_equivalence_pt_to_flax
self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)
tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py:166: in check_pt_flax_equivalence
pt_outputs = pt_model(**pt_inputs).to_tuple()
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py:358: in forward
vision_outputs = self.vision_model(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/vit/modeling_vit.py:619: in forward
embedding_output = self.embeddings(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/vit/modeling_vit.py:124: in forward
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/vit/modeling_vit.py:183: in forward
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/conv.py:554: in forward
return self._conv_forward(input, self.weight, self.bias)
../../pytorch/pytorch/torch/nn/modules/conv.py:549: in _conv_forward
return F.conv2d(
E RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
________________________________________________________________________ FlaxCLIPVisionBertModelTest.test_pt_flax_equivalence _________________________________________________________________________
tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py:243: in test_pt_flax_equivalence
self.check_equivalence_pt_to_flax(vision_config, text_config, inputs_dict)
tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py:207: in check_equivalence_pt_to_flax
self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)
tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py:166: in check_pt_flax_equivalence
pt_outputs = pt_model(**pt_inputs).to_tuple()
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py:358: in forward
vision_outputs = self.vision_model(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/clip/modeling_clip.py:1116: in forward
return self.vision_model(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/clip/modeling_clip.py:1040: in forward
hidden_states = self.embeddings(pixel_values)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/clip/modeling_clip.py:202: in forward
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/conv.py:554: in forward
return self._conv_forward(input, self.weight, self.bias)
../../pytorch/pytorch/torch/nn/modules/conv.py:549: in _conv_forward
return F.conv2d(
E RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
____________________________________________________________________ FlaxViT2GPT2EncoderDecoderModelTest.test_pt_flax_equivalence _____________________________________________________________________
tests/models/vision_encoder_decoder/test_modeling_flax_vision_encoder_decoder.py:352: in test_pt_flax_equivalence
self.check_equivalence_pt_to_flax(config, decoder_config, inputs_dict)
tests/models/vision_encoder_decoder/test_modeling_flax_vision_encoder_decoder.py:288: in check_equivalence_pt_to_flax
self.check_pt_flax_equivalence(pt_model, fx_model, inputs_dict)
tests/models/vision_encoder_decoder/test_modeling_flax_vision_encoder_decoder.py:247: in check_pt_flax_equivalence
pt_outputs = pt_model(**pt_inputs).to_tuple()
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py:587: in forward
encoder_outputs = self.encoder(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/vit/modeling_vit.py:619: in forward
embedding_output = self.embeddings(
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/vit/modeling_vit.py:124: in forward
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
src/transformers/models/vit/modeling_vit.py:183: in forward
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
../../pytorch/pytorch/torch/nn/modules/module.py:1736: in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/module.py:1747: in _call_impl
return forward_call(*args, **kwargs)
../../pytorch/pytorch/torch/nn/modules/conv.py:554: in forward
return self._conv_forward(input, self.weight, self.bias)
../../pytorch/pytorch/torch/nn/modules/conv.py:549: in _conv_forward
return F.conv2d(
E RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
========================================================================================== warnings summary ===========================================================================================
../../../pytorch.cuda/lib/python3.10/site-packages/tensorflow/__init__.py:30
/home/dvrogozh/pytorch.cuda/lib/python3.10/site-packages/tensorflow/__init__.py:30: DeprecationWarning: The distutils package is deprecated and slated for removal in Python 3.12. Use setuptools or check PEP 632 for potential alternatives
import distutils as _distutils
src/transformers/deepspeed.py:24
/home/dvrogozh/git/huggingface/transformers/src/transformers/deepspeed.py:24: FutureWarning: transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations
warnings.warn(
../../../pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:46
/home/dvrogozh/pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:46: DeprecationWarning: jax.numpy.DeviceArray is deprecated. Use jax.Array.
v: jnp.DeviceArray,
../../../pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:48
/home/dvrogozh/pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:48: DeprecationWarning: jax.numpy.DeviceArray is deprecated. Use jax.Array.
inputs: jnp.DeviceArray,
../../../pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:49
/home/dvrogozh/pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:49: DeprecationWarning: jax.numpy.DeviceArray is deprecated. Use jax.Array.
targets: jnp.DeviceArray,
../../../pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:50
/home/dvrogozh/pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:50: DeprecationWarning: jax.numpy.DeviceArray is deprecated. Use jax.Array.
) -> jnp.DeviceArray:
../../../pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:72
/home/dvrogozh/pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:72: DeprecationWarning: jax.numpy.DeviceArray is deprecated. Use jax.Array.
inputs: jnp.DeviceArray,
../../../pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:73
/home/dvrogozh/pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:73: DeprecationWarning: jax.numpy.DeviceArray is deprecated. Use jax.Array.
targets: jnp.DeviceArray,
../../../pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:74
/home/dvrogozh/pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:74: DeprecationWarning: jax.numpy.DeviceArray is deprecated. Use jax.Array.
) -> jnp.DeviceArray:
../../../pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:97
/home/dvrogozh/pytorch.cuda/lib/python3.10/site-packages/optax/_src/second_order.py:97: DeprecationWarning: jax.numpy.DeviceArray is deprecated. Use jax.Array.
) -> jnp.DeviceArray:
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
======================================================================================= short test summary info =======================================================================================
FAILED tests/models/informer/test_modeling_informer.py::InformerModelTest::test_encoder_decoder_model_standalone - RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument other in method wrapper_CUDA__equal)
FAILED tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py::FlaxGPT2EncoderDecoderModelTest::test_pt_flax_equivalence - RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument index in method wrapper_CUDA__index_select)
FAILED tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py::FlaxBartEncoderDecoderModelTest::test_pt_flax_equivalence - RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument index in method wrapper_CUDA__index_select)
FAILED tests/models/encoder_decoder/test_modeling_flax_encoder_decoder.py::FlaxBertEncoderDecoderModelTest::test_pt_flax_equivalence - RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument index in method wrapper_CUDA__index_select)
FAILED tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py::ViTBertModelTest::test_pt_flax_equivalence - TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
FAILED tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py::CLIPVisionBertModelTest::test_pt_flax_equivalence - TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
FAILED tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py::FlaxWav2Vec2GPT2ModelTest::test_pt_flax_equivalence - RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
FAILED tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py::FlaxWav2Vec2BartModelTest::test_pt_flax_equivalence - RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
FAILED tests/models/speech_encoder_decoder/test_modeling_flax_speech_encoder_decoder.py::FlaxWav2Vec2BertModelTest::test_pt_flax_equivalence - RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
FAILED tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py::FlaxViTBertModelTest::test_pt_flax_equivalence - RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
FAILED tests/models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py::FlaxCLIPVisionBertModelTest::test_pt_flax_equivalence - RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
FAILED tests/models/vision_encoder_decoder/test_modeling_flax_vision_encoder_decoder.py::FlaxViT2GPT2EncoderDecoderModelTest::test_pt_flax_equivalence - RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
================================================================================== 12 failed, 10 warnings in 19.19s ===================================================================================