Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions docs/source/ko/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -125,8 +125,8 @@
title: (๋ฒˆ์—ญ์ค‘) Training on Specialized Hardware
- local: perf_infer_cpu
title: CPU๋กœ ์ถ”๋ก ํ•˜๊ธฐ
- local: in_translation
title: (๋ฒˆ์—ญ์ค‘) Inference on one GPU
- local: perf_infer_gpu_one
title: ํ•˜๋‚˜์˜ GPU๋ฅผ ํ™œ์šฉํ•œ ์ถ”๋ก 
- local: perf_infer_gpu_many
title: ์—ฌ๋Ÿฌ GPU์—์„œ ์ถ”๋ก 
- local: in_translation
Expand Down
184 changes: 184 additions & 0 deletions docs/source/ko/perf_infer_gpu_one.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the

โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->

# ๋‹จ์ผ GPU์—์„œ ํšจ์œจ์ ์ธ ์ถ”๋ก  [[efficient-inference-on-a-single-gpu]]

์ด ๊ฐ€์ด๋“œ ์™ธ์—๋„, [๋‹จ์ผ GPU์—์„œ์˜ ํ›ˆ๋ จ ๊ฐ€์ด๋“œ](perf_train_gpu_one)์™€ [CPU์—์„œ์˜ ์ถ”๋ก  ๊ฐ€์ด๋“œ](perf_infer_cpu)์—์„œ๋„ ๊ด€๋ จ ์ •๋ณด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

## Better Transformer: PyTorch ๋„ค์ดํ‹ฐ๋ธŒ Transformer ํŒจ์ŠคํŠธํŒจ์Šค [[better-transformer-pytorchnative-transformer-fastpath]]

PyTorch ๋„ค์ดํ‹ฐ๋ธŒ [`nn.MultiHeadAttention`](https://pytorch.org/blog/a-better-transformer-for-fast-transformer-encoder-inference/) ์–ดํ…์…˜ ํŒจ์ŠคํŠธํŒจ์Šค์ธ BetterTransformer๋Š” [๐Ÿค— Optimum ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ](https://huggingface.co/docs/optimum/bettertransformer/overview)์˜ ํ†ตํ•ฉ์„ ํ†ตํ•ด Transformers์™€ ํ•จ๊ป˜ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

PyTorch์˜ ์–ดํ…์…˜ ํŒจ์ŠคํŠธํŒจ์Šค๋Š” ์ปค๋„ ํ“จ์ „๊ณผ [์ค‘์ฒฉ๋œ ํ…์„œ](https://pytorch.org/docs/stable/nested.html)์˜ ์‚ฌ์šฉ์„ ํ†ตํ•ด ์ถ”๋ก  ์†๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ž์„ธํ•œ ๋ฒค์น˜๋งˆํฌ๋Š” [์ด ๋ธ”๋กœ๊ทธ ๊ธ€](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2)์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

[`optimum`](https://github.com/huggingface/optimum) ํŒจํ‚ค์ง€๋ฅผ ์„ค์น˜ํ•œ ํ›„์—๋Š” ์ถ”๋ก  ์ค‘ Better Transformer๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก [`~PreTrainedModel.to_bettertransformer`]๋ฅผ ํ˜ธ์ถœํ•˜์—ฌ ๊ด€๋ จ ๋‚ด๋ถ€ ๋ชจ๋“ˆ์„ ๋Œ€์ฒดํ•ฉ๋‹ˆ๋‹ค:

```python
model = model.to_bettertransformer()
```

[`~PreTrainedModel.reverse_bettertransformer`] ๋ฉ”์†Œ๋“œ๋Š” ์ •๊ทœํ™”๋œ transformers ๋ชจ๋ธ๋ง์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ๋ธ์„ ์ €์žฅํ•˜๊ธฐ ์ „ ์›๋ž˜์˜ ๋ชจ๋ธ๋ง์œผ๋กœ ๋Œ์•„๊ฐˆ ์ˆ˜ ์žˆ๋„๋ก ํ•ด์ค๋‹ˆ๋‹ค:

```python
model = model.reverse_bettertransformer()
model.save_pretrained("saved_model")
```

PyTorch 2.0๋ถ€ํ„ฐ๋Š” ์–ดํ…์…˜ ํŒจ์ŠคํŠธํŒจ์Šค๊ฐ€ ์ธ์ฝ”๋”์™€ ๋””์ฝ”๋” ๋ชจ๋‘์—์„œ ์ง€์›๋ฉ๋‹ˆ๋‹ค. ์ง€์›๋˜๋Š” ์•„ํ‚คํ…์ฒ˜ ๋ชฉ๋ก์€ [์—ฌ๊ธฐ](https://huggingface.co/docs/optimum/bettertransformer/overview#supported-models)์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

## FP4 ํ˜ผํ•ฉ ์ •๋ฐ€๋„ ์ถ”๋ก ์„ ์œ„ํ•œ `bitsandbytes` ํ†ตํ•ฉ [[bitsandbytes-integration-for-fp4-mixedprecision-inference]]

`bitsandbytes`๋ฅผ ์„ค์น˜ํ•˜๋ฉด GPU์—์„œ ์†์‰ฝ๊ฒŒ ๋ชจ๋ธ์„ ์••์ถ•ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. FP4 ์–‘์žํ™”๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์›๋ž˜์˜ ์ „์ฒด ์ •๋ฐ€๋„ ๋ฒ„์ „๊ณผ ๋น„๊ตํ•˜์—ฌ ๋ชจ๋ธ ํฌ๊ธฐ๋ฅผ ์ตœ๋Œ€ 8๋ฐฐ ์ค„์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์•„๋ž˜์—์„œ ์‹œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํ™•์ธํ•˜์„ธ์š”.

<Tip>

์ด ๊ธฐ๋Šฅ์€ ๋‹ค์ค‘ GPU ์„ค์ •์—์„œ๋„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

</Tip>

### ์š”๊ตฌ ์‚ฌํ•ญ [[requirements-for-fp4-mixedprecision-inference]]

- ์ตœ์‹  `bitsandbytes` ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ
`pip install bitsandbytes>=0.39.0`

- ์ตœ์‹  `accelerate`๋ฅผ ์†Œ์Šค์—์„œ ์„ค์น˜
`pip install git+https://github.com/huggingface/accelerate.git`

- ์ตœ์‹  `transformers`๋ฅผ ์†Œ์Šค์—์„œ ์„ค์น˜
`pip install git+https://github.com/huggingface/transformers.git`

### FP4 ๋ชจ๋ธ ์‹คํ–‰ - ๋‹จ์ผ GPU ์„ค์ • - ๋น ๋ฅธ ์‹œ์ž‘ [[running-fp4-models-single-gpu-setup-quickstart]]

๋‹ค์Œ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•˜์—ฌ ๋‹จ์ผ GPU์—์„œ ๋น ๋ฅด๊ฒŒ FP4 ๋ชจ๋ธ์„ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

```py
from transformers import AutoModelForCausalLM

model_name = "bigscience/bloom-2b5"
model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
```
`device_map`์€ ์„ ํƒ ์‚ฌํ•ญ์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ `device_map = 'auto'`๋กœ ์„ค์ •ํ•˜๋Š” ๊ฒƒ์ด ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๋ฆฌ์†Œ์Šค๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๋””์ŠคํŒจ์น˜ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ถ”๋ก ์— ์žˆ์–ด ๊ถŒ์žฅ๋ฉ๋‹ˆ๋‹ค.

### FP4 ๋ชจ๋ธ ์‹คํ–‰ - ๋‹ค์ค‘ GPU ์„ค์ • [[running-fp4-models-multi-gpu-setup]]

๋‹ค์ค‘ GPU์—์„œ ํ˜ผํ•ฉ 4๋น„ํŠธ ๋ชจ๋ธ์„ ๊ฐ€์ ธ์˜ค๋Š” ๋ฐฉ๋ฒ•์€ ๋‹จ์ผ GPU ์„ค์ •๊ณผ ๋™์ผํ•ฉ๋‹ˆ๋‹ค(๋™์ผํ•œ ๋ช…๋ น์–ด ์‚ฌ์šฉ):
```py
model_name = "bigscience/bloom-2b5"
model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
```
ํ•˜์ง€๋งŒ `accelerate`๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ GPU์— ํ• ๋‹นํ•  GPU RAM์„ ์ œ์–ดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ ๊ฐ™์ด `max_memory` ์ธ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์„ธ์š”:

```py
max_memory_mapping = {0: "600MB", 1: "1GB"}
model_name = "bigscience/bloom-3b"
model_4bit = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", load_in_4bit=True, max_memory=max_memory_mapping
)
```
์ด ์˜ˆ์—์„œ๋Š” ์ฒซ ๋ฒˆ์งธ GPU๊ฐ€ 600MB์˜ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ๋‘ ๋ฒˆ์งธ GPU๊ฐ€ 1GB๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

### ๊ณ ๊ธ‰ ์‚ฌ์šฉ๋ฒ• [[advanced-usage]]

์ด ๋ฐฉ๋ฒ•์˜ ๋” ๊ณ ๊ธ‰ ์‚ฌ์šฉ๋ฒ•์— ๋Œ€ํ•ด์„œ๋Š” [์–‘์žํ™”](main_classes/quantization) ๋ฌธ์„œ ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

## Int8 ํ˜ผํ•ฉ ์ •๋ฐ€๋„ ํ–‰๋ ฌ ๋ถ„ํ•ด๋ฅผ ์œ„ํ•œ `bitsandbytes` ํ†ตํ•ฉ [[bitsandbytes-integration-for-int8-mixedprecision-matrix-decomposition]]

<Tip>

์ด ๊ธฐ๋Šฅ์€ ๋‹ค์ค‘ GPU ์„ค์ •์—์„œ๋„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

</Tip>

[`LLM.int8() : 8-bit Matrix Multiplication for Transformers at Scale`](https://arxiv.org/abs/2208.07339) ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ๋ช‡ ์ค„์˜ ์ฝ”๋“œ๋กœ Hub์˜ ๋ชจ๋“  ๋ชจ๋ธ์— ๋Œ€ํ•œ Hugging Face ํ†ตํ•ฉ์„ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค.
์ด ๋ฐฉ๋ฒ•์€ `float16` ๋ฐ `bfloat16` ๊ฐ€์ค‘์น˜์— ๋Œ€ํ•ด `nn.Linear` ํฌ๊ธฐ๋ฅผ 2๋ฐฐ๋กœ ์ค„์ด๊ณ , `float32` ๊ฐ€์ค‘์น˜์— ๋Œ€ํ•ด 4๋ฐฐ๋กœ ์ค„์ž…๋‹ˆ๋‹ค. ์ด๋Š” ์ ˆ๋ฐ˜ ์ •๋ฐ€๋„์—์„œ ์ด์ƒ์น˜๋ฅผ ์ฒ˜๋ฆฌํ•จ์œผ๋กœ์จ ํ’ˆ์งˆ์— ๊ฑฐ์˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.

![HFxbitsandbytes.png](https://cdn-uploads.huggingface.co/production/uploads/1659861207959-62441d1d9fdefb55a0b7d12c.png)

Int8 ํ˜ผํ•ฉ ์ •๋ฐ€๋„ ํ–‰๋ ฌ ๋ถ„ํ•ด๋Š” ํ–‰๋ ฌ ๊ณฑ์…ˆ์„ ๋‘ ๊ฐœ์˜ ์ŠคํŠธ๋ฆผ์œผ๋กœ ๋ถ„๋ฆฌํ•ฉ๋‹ˆ๋‹ค: (1) fp16๋กœ ๊ณฑํ•ด์ง€๋Š” ์ฒด๊ณ„์ ์ธ ํŠน์ด๊ฐ’ ์ด์ƒ์น˜ ์ŠคํŠธ๋ฆผ ํ–‰๋ ฌ(0.01%) ๋ฐ (2) int8 ํ–‰๋ ฌ ๊ณฑ์…ˆ์˜ ์ผ๋ฐ˜์ ์ธ ์ŠคํŠธ๋ฆผ(99.9%). ์ด ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋ฉด ๋งค์šฐ ํฐ ๋ชจ๋ธ์— ๋Œ€ํ•ด ์˜ˆ์ธก ์ €ํ•˜ ์—†์ด int8 ์ถ”๋ก ์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
์ด ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ [๋…ผ๋ฌธ](https://arxiv.org/abs/2208.07339)์ด๋‚˜ [ํ†ตํ•ฉ์— ๊ด€ํ•œ ๋ธ”๋กœ๊ทธ ๊ธ€](https://huggingface.co/blog/hf-bitsandbytes-integration)์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

![MixedInt8.gif](https://cdn-uploads.huggingface.co/production/uploads/1660567469965-62441d1d9fdefb55a0b7d12c.gif)

์ปค๋„์€ GPU ์ „์šฉ์œผ๋กœ ์ปดํŒŒ์ผ๋˜์–ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํ˜ผํ•ฉ 8๋น„ํŠธ ๋ชจ๋ธ์„ ์‹คํ–‰ํ•˜๋ ค๋ฉด GPU๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•˜๊ธฐ ์ „์— ๋ชจ๋ธ์˜ 1/4(๋˜๋Š” ๋ชจ๋ธ ๊ฐ€์ค‘์น˜๊ฐ€ ์ ˆ๋ฐ˜ ์ •๋ฐ€๋„์ธ ๊ฒฝ์šฐ ์ ˆ๋ฐ˜)์„ ์ €์žฅํ•  ์ถฉ๋ถ„ํ•œ GPU ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ์žˆ๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”.
์ด ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋˜๋Š” ๋ช‡ ๊ฐ€์ง€ ์ฐธ๊ณ  ์‚ฌํ•ญ์ด ์•„๋ž˜์— ๋‚˜์™€ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜๋Š” [Google colab](#colab-demos)์—์„œ ๋ฐ๋ชจ๋ฅผ ๋”ฐ๋ผํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.

### ์š”๊ตฌ ์‚ฌํ•ญ [[requirements-for-int8-mixedprecision-matrix-decomposition]]

- `bitsandbytes<0.37.0`์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ, 8๋น„ํŠธ ํ…์„œ ์ฝ”์–ด(Turing, Ampere ๋˜๋Š” ์ดํ›„ ์•„ํ‚คํ…์ฒ˜ - ์˜ˆ: T4, RTX20s RTX30s, A40-A100)๋ฅผ ์ง€์›ํ•˜๋Š” NVIDIA GPU์—์„œ ์‹คํ–‰ํ•˜๋Š”์ง€ ํ™•์ธํ•˜์„ธ์š”. `bitsandbytes>=0.37.0`์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ, ๋ชจ๋“  GPU๊ฐ€ ์ง€์›๋ฉ๋‹ˆ๋‹ค.
- ์˜ฌ๋ฐ”๋ฅธ ๋ฒ„์ „์˜ `bitsandbytes`๋ฅผ ๋‹ค์Œ ๋ช…๋ น์œผ๋กœ ์„ค์น˜ํ•˜์„ธ์š”:
`pip install bitsandbytes>=0.31.5`
- `accelerate`๋ฅผ ์„ค์น˜ํ•˜์„ธ์š”
`pip install accelerate>=0.12.0`

### ํ˜ผํ•ฉ Int8 ๋ชจ๋ธ ์‹คํ–‰ - ๋‹จ์ผ GPU ์„ค์ • [[running-mixedint8-models-single-gpu-setup]]

ํ•„์š”ํ•œ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์„ค์น˜ํ•œ ํ›„ ํ˜ผํ•ฉ 8๋น„ํŠธ ๋ชจ๋ธ์„ ๊ฐ€์ ธ์˜ค๋Š” ๋ฐฉ๋ฒ•์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

```py
from transformers import AutoModelForCausalLM

model_name = "bigscience/bloom-2b5"
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
```

ํ…์ŠคํŠธ ์ƒ์„ฑ์˜ ๊ฒฝ์šฐ:

* `pipeline()` ํ•จ์ˆ˜ ๋Œ€์‹  ๋ชจ๋ธ์˜ `generate()` ๋ฉ”์†Œ๋“œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์„ ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค. `pipeline()` ํ•จ์ˆ˜๋กœ๋Š” ์ถ”๋ก ์ด ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ํ˜ผํ•ฉ 8๋น„ํŠธ ๋ชจ๋ธ์— ์ตœ์ ํ™”๋˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์— `generate()` ๋ฉ”์†Œ๋“œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ๋А๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, nucleus ์ƒ˜ํ”Œ๋ง๊ณผ ๊ฐ™์€ ์ผ๋ถ€ ์ƒ˜ํ”Œ๋ง ์ „๋žต์€ ํ˜ผํ•ฉ 8๋น„ํŠธ ๋ชจ๋ธ์— ๋Œ€ํ•ด `pipeline()` ํ•จ์ˆ˜์—์„œ ์ง€์›๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
* ์ž…๋ ฅ์„ ๋ชจ๋ธ๊ณผ ๋™์ผํ•œ GPU์— ๋ฐฐ์น˜ํ•˜๋Š” ๊ฒƒ์ด ์ข‹์Šต๋‹ˆ๋‹ค.

๋‹ค์Œ์€ ๊ฐ„๋‹จํ•œ ์˜ˆ์ž…๋‹ˆ๋‹ค:

```py
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "bigscience/bloom-2b5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)

prompt = "Hello, my llama is cute"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(**inputs)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
```


### ํ˜ผํ•ฉ Int8 ๋ชจ๋ธ ์‹คํ–‰ - ๋‹ค์ค‘ GPU ์„ค์ • [[running-mixedint8-models-multi-gpu-setup]]

๋‹ค์ค‘ GPU์—์„œ ํ˜ผํ•ฉ 8๋น„ํŠธ ๋ชจ๋ธ์„ ๋กœ๋“œํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๋‹จ์ผ GPU ์„ค์ •๊ณผ ๋™์ผํ•ฉ๋‹ˆ๋‹ค(๋™์ผํ•œ ๋ช…๋ น์–ด ์‚ฌ์šฉ):
```py
model_name = "bigscience/bloom-2b5"
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
```
ํ•˜์ง€๋งŒ `accelerate`๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ GPU์— ํ• ๋‹นํ•  GPU RAM์„ ์ œ์–ดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ ๊ฐ™์ด `max_memory` ์ธ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์„ธ์š”:

```py
max_memory_mapping = {0: "1GB", 1: "2GB"}
model_name = "bigscience/bloom-3b"
model_8bit = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", load_in_8bit=True, max_memory=max_memory_mapping
)
```
์ด ์˜ˆ์‹œ์—์„œ๋Š” ์ฒซ ๋ฒˆ์งธ GPU๊ฐ€ 1GB์˜ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ๋‘ ๋ฒˆ์งธ GPU๊ฐ€ 2GB๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

### Colab ๋ฐ๋ชจ [[colab-demos]]

์ด ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋ฉด ์ด์ „์— Google Colab์—์„œ ์ถ”๋ก ํ•  ์ˆ˜ ์—†์—ˆ๋˜ ๋ชจ๋ธ์— ๋Œ€ํ•ด ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
Google Colab์—์„œ 8๋น„ํŠธ ์–‘์žํ™”๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ T5-11b(42GB in fp32)๋ฅผ ์‹คํ–‰ํ•˜๋Š” ๋ฐ๋ชจ๋ฅผ ํ™•์ธํ•˜์„ธ์š”:

[![Open In Colab: T5-11b demo](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1YORPWx4okIHXnjW7MSAidXN29mPVNT7F?usp=sharing)

๋˜๋Š” BLOOM-3B์— ๋Œ€ํ•œ ๋ฐ๋ชจ๋ฅผ ํ™•์ธํ•˜์„ธ์š”:

[![Open In Colab: BLOOM-3b demo](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4?usp=sharing)