Skip to content

koolo233/dimensionality_reduction_python

Repository files navigation

dimensionality_reduction_python

Python implementation of some dimensionality reduction methods(PCA, LDA, LLE, NMDS, et al.)

基于python实现一些降维方法,包括算法原理、代码、案例以及参考资料

ToDo List

  • PCA(Principal Component Analysis, 主成分分析)
  • FLD(Fisher's Linear Discriminant, Fisher线性判别, Fisher)
  • LLE(Locally Linear Embedding, 局部线性嵌入)
  • LE(Laplacian Eigenmap, 拉普拉斯特征映射)
  • PCoA(Principal Coordinates Analysis, 主坐标分析, Classical Multidimensional Scaling, 经典多维尺度分析)
  • ISOMAP(Isometric Mapping, 等距映射)
  • NMDS(Non-metric multidimensional scaling, 非度量多维尺度分析)
  • KPCA(Kernel Principle Component Analysis, 核主成分分析)
  • RP(random projection, 随机映射)
  • Diffusion maps(Diffusion maps, 扩散映射)
  • Auto Encoder-Decoder
  • SNE(Stochastic Neighbor Embedding)
  • t-SNE(t-distributed stochastic neighbor embedding)
  • UMAP(Uniform Manifold Approximation and Projection for Dimension Reduction, 基于一致流形逼近和投影的降维技术)
  • LargeVis

对比

和sklearn等库中直接调用函数得到的结果进行对比

avatar

avatar

avatar

avatar

avatar

avatar

avatar

avatar

avatar

avatar

avatar

About

Python implementation of some dimensionality reduction methods

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published