Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions configs/simrec_refcoco_scratch.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,12 +11,13 @@
dataset.mask_path["refcoco"] = "/home/rentianhe/dataset/rec/masks/refcoco"

# Refine training cfg
train.output_dir = "./output/test_no_syncbn_one_gpu"
train.output_dir = "./output/test_amp"
train.batch_size = 32
train.save_period = 1
train.log_period = 10
train.evaluation.eval_batch_size = 32
train.sync_bn.enabled = False
train.sync_bn.enabled = True
train.amp.enabled = False

# Refine optim
optim.lr = train.base_lr
Expand Down
2 changes: 1 addition & 1 deletion simrec/layers/sa_layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,7 @@ def att(self, value, key, query, mask):

# print(scores.size(),mask.size())
if mask is not None:
scores = scores.masked_fill(mask, -1e9)
scores = scores.masked_fill(mask, -1e4)

att_map = F.softmax(scores, dim=-1)
att_map = self.dropout(att_map)
Expand Down
12 changes: 6 additions & 6 deletions tools/eval_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ def validate(cfg, model, data_loader, writer, epoch, ix_to_token, logger, rank,
mask_aps={}
for item in np.arange(0.5, 1, 0.05):
mask_aps[item]=[]
meters = [batch_time, data_time, losses, box_ap, mask_ap,inconsistency_error]
meters = [batch_time, data_time, losses, box_ap, mask_ap, inconsistency_error]
meters_dict = {meter.name: meter for meter in meters}

with torch.no_grad():
Expand Down Expand Up @@ -116,11 +116,11 @@ def validate(cfg, model, data_loader, writer, epoch, ix_to_token, logger, rank,
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(
f'Evaluation on {prefix}: [{idx}/{len(data_loader)}] '
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
f'Loss {losses.val:.4f} ({losses.avg:.4f}) '
f'[email protected] {box_ap.val:.4f} ({box_ap.avg:.4f}) '
f'MaskIoU {mask_ap.val:.4f} ({mask_ap.avg:.4f}) '
f'IE {inconsistency_error.val:.4f} ({inconsistency_error.avg:.4f}) '
f'Time {batch_time.val:.3f} ({batch_time.avg_reduce:.3f}) '
f'Loss {losses.val:.4f} ({losses.avg_reduce:.4f}) '
f'[email protected] {box_ap.val:.4f} ({box_ap.avg_reduce:.4f}) '
f'MaskIoU {mask_ap.val:.4f} ({mask_ap.avg_reduce:.4f}) '
f'IE {inconsistency_error.val:.4f} ({inconsistency_error.avg_reduce:.4f}) '
f'Mem {memory_used:.0f}MB')
batch_time.update(time.time() - end)
end = time.time()
Expand Down
12 changes: 8 additions & 4 deletions tools/train_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,7 +210,10 @@ def main(cfg):
ema = EMA(model, cfg.train.ema.alpha, cfg.train.ema.buffer_ema)
train_one_epoch(cfg, model, optimizer, scheduler, train_loader, scalar, writer, epoch, dist.get_rank(), ema)
box_ap, mask_ap = validate(cfg, model, val_loader, writer, epoch, val_set.ix_to_token, logger, dist.get_rank(), save_ids=save_ids, ema=ema)

max_box_ap = max(best_det_acc, box_ap)
max_mask_ap = max(best_seg_acc, mask_ap)
logger.info(f"Max [email protected]: {max_box_ap:.2f}%, MaskIoU: {max_mask_ap:.2f}%")

# save checkpoints
if epoch % cfg.train.save_period == 0 or epoch == (cfg.train.epochs - 1):
logger.info(f"saving checkpoints......")
Expand Down Expand Up @@ -249,9 +252,6 @@ def main(cfg):
cfg = LazyConfig.load(args.config)
cfg = LazyConfig.apply_overrides(cfg, args.opts)

# Environments setting
seed_everything(cfg.train.seed)

# Distributed setting
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ["RANK"])
Expand All @@ -270,6 +270,10 @@ def main(cfg):
)
torch.distributed.barrier()

# Environments setting
seed = cfg.train.seed + dist.get_rank()
seed_everything(seed)

# Path setting
output_dir = cfg.train.output_dir
os.makedirs(output_dir, exist_ok=True)
Expand Down