A comprehensive data analysis project using Python to clean, explore, visualize, and model a real-world financial dataset.
This project analyzes a financial dataset containing department-level monthly budgets, spending, and revenues. The goal is to:
- Clean and preprocess raw financial data
- Analyze spending and profits across departments
- Create insightful visualizations using Seaborn and Matplotlib
- Build a predictive model to estimate monthly profit/loss
- Provide business insights to support strategic decisions
يهدف هذا المشروع إلى تحليل بيانات مالية حقيقية تتضمن الميزانية الشهرية والمصروفات والإيرادات لكل قسم داخل الشركة، ويشمل:
- تنظيف ومعالجة البيانات الخام
- تحليل الإنفاق والربح حسب الأقسام
- إنشاء رسوم بيانية توضيحية باستخدام Seaborn وMatplotlib
- بناء نموذج تنبؤي لتقدير الربح/الخسارة
- تقديم رؤى لدعم اتخاذ القرار
- Python (Pandas, NumPy, Seaborn, Matplotlib)
- Power BI (for advanced dashboard visualization)
- Machine Learning (Linear Regression)
Profit Trends | Total Spending |
---|---|
![]() |
![]() |
- Clone this repo
- Install required libraries:
- Open
analysis_financial_dataset.ipynb
and run step-by-step
- Marketing department had the highest total spending
- HR achieved the highest total profit
- July was the month with the biggest loss across departments
Mohammed T. — Python Developer | Data Analyst | Power BI Specialist
🔗 Upwork Profile
📫 Reach me for freelance data analytics and automation projects!