Skip to content

mmmmmtttttt/financial-data-analysis-python-powerbi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

banner

📊 Financial Dataset Analysis with Python and Power BI

A comprehensive data analysis project using Python to clean, explore, visualize, and model a real-world financial dataset.


📌 Project Description (English)

This project analyzes a financial dataset containing department-level monthly budgets, spending, and revenues. The goal is to:

  • Clean and preprocess raw financial data
  • Analyze spending and profits across departments
  • Create insightful visualizations using Seaborn and Matplotlib
  • Build a predictive model to estimate monthly profit/loss
  • Provide business insights to support strategic decisions

📌 وصف المشروع (عربي)

يهدف هذا المشروع إلى تحليل بيانات مالية حقيقية تتضمن الميزانية الشهرية والمصروفات والإيرادات لكل قسم داخل الشركة، ويشمل:

  • تنظيف ومعالجة البيانات الخام
  • تحليل الإنفاق والربح حسب الأقسام
  • إنشاء رسوم بيانية توضيحية باستخدام Seaborn وMatplotlib
  • بناء نموذج تنبؤي لتقدير الربح/الخسارة
  • تقديم رؤى لدعم اتخاذ القرار

🧪 Tools & Libraries / الأدوات والمكتبات

  • Python (Pandas, NumPy, Seaborn, Matplotlib)
  • Power BI (for advanced dashboard visualization)
  • Machine Learning (Linear Regression)

📈 Key Visuals

Profit Trends Total Spending
Line Chart Bar Chart

🚀 How to Use

  1. Clone this repo
  2. Install required libraries:
  3. Open analysis_financial_dataset.ipynb and run step-by-step

📊 Result Highlights

  • Marketing department had the highest total spending
  • HR achieved the highest total profit
  • July was the month with the biggest loss across departments

🧠 Author

Mohammed T. — Python Developer | Data Analyst | Power BI Specialist
🔗 Upwork Profile
📫 Reach me for freelance data analytics and automation projects!

Total Spending by Department Total Spending by Department Total Spending by Department

Releases

No releases published

Packages

No packages published