Skip to content

Feature request : LLM Integration for Knowledge Graph Enhancement #741

@nicolas-geysse

Description

@nicolas-geysse

Based on the requirements and the existing TxtAI ecosystem, here's a proposed approach to develop LLM Integration for Knowledge Graph Enhancement:

  1. Automatic Knowledge Graph Generation and Enrichment:
from txtai.pipeline import TextToGraph
from txtai.graph import Graph
import networkx as nx

class LLMEnhancedGraph(Graph):
    def __init__(self):
        super().__init__()
        self.text_to_graph = TextToGraph()

    def generate_from_llm(self, llm_output):
        # Convert LLM output to graph structure
        graph_data = self.text_to_graph(llm_output)
        
        # Add new nodes and edges to existing graph
        for node, data in graph_data.nodes(data=True):
            self.graph.add_node(node, **data)
        for u, v, data in graph_data.edges(data=True):
            self.graph.add_edge(u, v, **data)

    def enrich_existing_graph(self, llm_output):
        new_graph = self.text_to_graph(llm_output)
        self.graph = nx.compose(self.graph, new_graph)
  1. Validation and Integration Pipeline:
from txtai.embeddings import Embeddings

class ValidationPipeline:
    def __init__(self, graph, embeddings):
        self.graph = graph
        self.embeddings = embeddings

    def validate_and_integrate(self, new_nodes, threshold=0.8):
        for node, data in new_nodes:
            # Check for similar existing nodes
            similar = self.embeddings.search(node, 1)
            if similar and similar[0][1] > threshold:
                # Merge with existing node
                existing_node = similar[0][0]
                self.graph.graph.nodes[existing_node].update(data)
            else:
                # Add as new node
                self.graph.graph.add_node(node, **data)
  1. Feedback Mechanism:
class FeedbackMechanism:
    def __init__(self, graph, embeddings):
        self.graph = graph
        self.embeddings = embeddings
        self.feedback_log = []

    def log_feedback(self, node, feedback):
        self.feedback_log.append((node, feedback))

    def apply_feedback(self):
        for node, feedback in self.feedback_log:
            if feedback == 'positive':
                # Increase confidence or weight of the node
                self.graph.graph.nodes[node]['confidence'] = self.graph.graph.nodes[node].get('confidence', 1) * 1.1
            elif feedback == 'negative':
                # Decrease confidence or weight of the node
                self.graph.graph.nodes[node]['confidence'] = self.graph.graph.nodes[node].get('confidence', 1) * 0.9

    def retrain_embeddings(self):
        # Extract text from graph nodes
        texts = [data.get('text', '') for _, data in self.graph.graph.nodes(data=True)]
        # Retrain embeddings with updated graph data
        self.embeddings.index(texts)
  1. Integration with TxtAI:
from txtai.pipeline import LLM

class LLMGraphEnhancer:
    def __init__(self, graph, embeddings, llm_model="gpt-3.5-turbo"):
        self.graph = LLMEnhancedGraph()
        self.validation = ValidationPipeline(self.graph, embeddings)
        self.feedback = FeedbackMechanism(self.graph, embeddings)
        self.llm = LLM(model=llm_model)

    def enhance_graph(self, query):
        # Generate new knowledge using LLM
        llm_output = self.llm(f"Generate knowledge graph for: {query}")
        
        # Generate and enrich graph
        self.graph.generate_from_llm(llm_output)
        
        # Validate and integrate new nodes
        new_nodes = self.graph.graph.nodes(data=True)
        self.validation.validate_and_integrate(new_nodes)
        
        # Apply feedback and retrain embeddings
        self.feedback.apply_feedback()
        self.feedback.retrain_embeddings()

    def get_enhanced_graph(self):
        return self.graph.graph

This implementation:

  1. Uses TxtAI's existing TextToGraph pipeline for converting LLM outputs to graph structures.
  2. Leverages NetworkX for graph operations, which is already used by TxtAI.
  3. Utilizes TxtAI's Embeddings for similarity checks in the validation process.
  4. Implements a feedback mechanism that adjusts node confidence and retrains embeddings.
  5. Integrates with TxtAI's LLM pipeline for generating new knowledge.

To use this enhanced graph system:

from txtai.embeddings import Embeddings

embeddings = Embeddings()
enhancer = LLMGraphEnhancer(Graph(), embeddings)

enhancer.enhance_graph("Artificial Intelligence")
enhanced_graph = enhancer.get_enhanced_graph()

This approach provides a simple, integrated solution for enhancing knowledge graphs with LLM outputs within the TxtAI ecosystem, while also incorporating feedback mechanisms for continuous improvement.

Citations:
[1] https://github.com/dylanhogg/llmgraph
[2] https://neo4j.com/developer-blog/construct-knowledge-graphs-unstructured-text/
[3] https://www.visual-design.net/post/llm-prompt-engineering-techniques-for-knowledge-graph
[4] https://datavid.com/blog/merging-large-language-models-and-knowledge-graphs-integration
[5] https://arxiv.org/pdf/2405.15436.pdf
[6] https://medium.com/neo4j/a-tale-of-llms-and-graphs-the-inaugural-genai-graph-gathering-c880119e43fe
[7] https://www.linkedin.com/pulse/transforming-llm-reliability-graphster-20-wisecubes-hallucination-j8adf
[8] https://ragaboutit.com/building-a-graph-rag-system-enhancing-llms-with-knowledge-graphs/
[9] https://arxiv.org/html/2312.11282v2
[10] https://blog.langchain.dev/enhancing-rag-based-applications-accuracy-by-constructing-and-leveraging-knowledge-graphs/
[11] https://github.com/XiaoxinHe/Awesome-Graph-LLM
[12] https://www.linkedin.com/pulse/optimizing-llm-precision-knowledge-graph-based-natural-language-lyere

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions