-
Notifications
You must be signed in to change notification settings - Fork 722
Description
Based on the requirements and the existing TxtAI ecosystem, here's a proposed approach to develop LLM Integration for Knowledge Graph Enhancement:
- Automatic Knowledge Graph Generation and Enrichment:
from txtai.pipeline import TextToGraph
from txtai.graph import Graph
import networkx as nx
class LLMEnhancedGraph(Graph):
def __init__(self):
super().__init__()
self.text_to_graph = TextToGraph()
def generate_from_llm(self, llm_output):
# Convert LLM output to graph structure
graph_data = self.text_to_graph(llm_output)
# Add new nodes and edges to existing graph
for node, data in graph_data.nodes(data=True):
self.graph.add_node(node, **data)
for u, v, data in graph_data.edges(data=True):
self.graph.add_edge(u, v, **data)
def enrich_existing_graph(self, llm_output):
new_graph = self.text_to_graph(llm_output)
self.graph = nx.compose(self.graph, new_graph)
- Validation and Integration Pipeline:
from txtai.embeddings import Embeddings
class ValidationPipeline:
def __init__(self, graph, embeddings):
self.graph = graph
self.embeddings = embeddings
def validate_and_integrate(self, new_nodes, threshold=0.8):
for node, data in new_nodes:
# Check for similar existing nodes
similar = self.embeddings.search(node, 1)
if similar and similar[0][1] > threshold:
# Merge with existing node
existing_node = similar[0][0]
self.graph.graph.nodes[existing_node].update(data)
else:
# Add as new node
self.graph.graph.add_node(node, **data)
- Feedback Mechanism:
class FeedbackMechanism:
def __init__(self, graph, embeddings):
self.graph = graph
self.embeddings = embeddings
self.feedback_log = []
def log_feedback(self, node, feedback):
self.feedback_log.append((node, feedback))
def apply_feedback(self):
for node, feedback in self.feedback_log:
if feedback == 'positive':
# Increase confidence or weight of the node
self.graph.graph.nodes[node]['confidence'] = self.graph.graph.nodes[node].get('confidence', 1) * 1.1
elif feedback == 'negative':
# Decrease confidence or weight of the node
self.graph.graph.nodes[node]['confidence'] = self.graph.graph.nodes[node].get('confidence', 1) * 0.9
def retrain_embeddings(self):
# Extract text from graph nodes
texts = [data.get('text', '') for _, data in self.graph.graph.nodes(data=True)]
# Retrain embeddings with updated graph data
self.embeddings.index(texts)
- Integration with TxtAI:
from txtai.pipeline import LLM
class LLMGraphEnhancer:
def __init__(self, graph, embeddings, llm_model="gpt-3.5-turbo"):
self.graph = LLMEnhancedGraph()
self.validation = ValidationPipeline(self.graph, embeddings)
self.feedback = FeedbackMechanism(self.graph, embeddings)
self.llm = LLM(model=llm_model)
def enhance_graph(self, query):
# Generate new knowledge using LLM
llm_output = self.llm(f"Generate knowledge graph for: {query}")
# Generate and enrich graph
self.graph.generate_from_llm(llm_output)
# Validate and integrate new nodes
new_nodes = self.graph.graph.nodes(data=True)
self.validation.validate_and_integrate(new_nodes)
# Apply feedback and retrain embeddings
self.feedback.apply_feedback()
self.feedback.retrain_embeddings()
def get_enhanced_graph(self):
return self.graph.graph
This implementation:
- Uses TxtAI's existing
TextToGraph
pipeline for converting LLM outputs to graph structures. - Leverages NetworkX for graph operations, which is already used by TxtAI.
- Utilizes TxtAI's
Embeddings
for similarity checks in the validation process. - Implements a feedback mechanism that adjusts node confidence and retrains embeddings.
- Integrates with TxtAI's
LLM
pipeline for generating new knowledge.
To use this enhanced graph system:
from txtai.embeddings import Embeddings
embeddings = Embeddings()
enhancer = LLMGraphEnhancer(Graph(), embeddings)
enhancer.enhance_graph("Artificial Intelligence")
enhanced_graph = enhancer.get_enhanced_graph()
This approach provides a simple, integrated solution for enhancing knowledge graphs with LLM outputs within the TxtAI ecosystem, while also incorporating feedback mechanisms for continuous improvement.
Citations:
[1] https://github.com/dylanhogg/llmgraph
[2] https://neo4j.com/developer-blog/construct-knowledge-graphs-unstructured-text/
[3] https://www.visual-design.net/post/llm-prompt-engineering-techniques-for-knowledge-graph
[4] https://datavid.com/blog/merging-large-language-models-and-knowledge-graphs-integration
[5] https://arxiv.org/pdf/2405.15436.pdf
[6] https://medium.com/neo4j/a-tale-of-llms-and-graphs-the-inaugural-genai-graph-gathering-c880119e43fe
[7] https://www.linkedin.com/pulse/transforming-llm-reliability-graphster-20-wisecubes-hallucination-j8adf
[8] https://ragaboutit.com/building-a-graph-rag-system-enhancing-llms-with-knowledge-graphs/
[9] https://arxiv.org/html/2312.11282v2
[10] https://blog.langchain.dev/enhancing-rag-based-applications-accuracy-by-constructing-and-leveraging-knowledge-graphs/
[11] https://github.com/XiaoxinHe/Awesome-Graph-LLM
[12] https://www.linkedin.com/pulse/optimizing-llm-precision-knowledge-graph-based-natural-language-lyere