Skip to content
8 changes: 4 additions & 4 deletions pandas/tests/frame/test_arithmetic.py
Original file line number Diff line number Diff line change
Expand Up @@ -2007,11 +2007,11 @@ def test_bool_frame_mult_float():
tm.assert_frame_equal(result, expected)


def test_frame_sub_nullable_int(any_int_dtype):
def test_frame_sub_nullable_int(any_int_ea_dtype):
# GH 32822
series1 = Series([1, 2, np.nan], dtype=any_int_dtype)
series2 = Series([1, 2, 3], dtype=any_int_dtype)
expected = DataFrame([0, 0, np.nan], dtype=any_int_dtype)
series1 = Series([1, 2, None], dtype=any_int_ea_dtype)
series2 = Series([1, 2, 3], dtype=any_int_ea_dtype)
expected = DataFrame([0, 0, None], dtype=any_int_ea_dtype)
result = series1.to_frame() - series2.to_frame()
tm.assert_frame_equal(result, expected)

Expand Down
3 changes: 2 additions & 1 deletion pandas/tests/frame/test_constructors.py
Original file line number Diff line number Diff line change
Expand Up @@ -2574,7 +2574,8 @@ def check_views(c_only: bool = False):

# FIXME(GH#35417): until GH#35417, iloc.setitem into EA values does not preserve
# view, so we have to check in the other direction
df.iloc[:, 2] = pd.array([45, 46], dtype=c.dtype)
with tm.assert_produces_warning(FutureWarning, match="will attempt to set"):
df.iloc[:, 2] = pd.array([45, 46], dtype=c.dtype)
assert df.dtypes.iloc[2] == c.dtype
if not copy:
check_views(True)
Expand Down
4 changes: 2 additions & 2 deletions pandas/tests/groupby/aggregate/test_numba.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ def incorrect_function(values, index):


@td.skip_if_no("numba")
@pytest.mark.filterwarnings("ignore:\n")
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
@pytest.mark.parametrize("jit", [True, False])
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
Expand Down Expand Up @@ -76,7 +76,7 @@ def func_numba(values, index):


@td.skip_if_no("numba")
@pytest.mark.filterwarnings("ignore:\n")
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
@pytest.mark.parametrize("jit", [True, False])
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/groupby/test_numba.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@


@td.skip_if_no("numba")
@pytest.mark.filterwarnings("ignore:\n")
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
class TestEngine:
def test_cython_vs_numba_frame(
Expand Down
4 changes: 2 additions & 2 deletions pandas/tests/groupby/transform/test_numba.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ def incorrect_function(values, index):


@td.skip_if_no("numba")
@pytest.mark.filterwarnings("ignore:\n")
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
@pytest.mark.parametrize("jit", [True, False])
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
Expand Down Expand Up @@ -73,7 +73,7 @@ def func(values, index):


@td.skip_if_no("numba")
@pytest.mark.filterwarnings("ignore:\n")
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
@pytest.mark.parametrize("jit", [True, False])
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
Expand Down
7 changes: 6 additions & 1 deletion pandas/tests/io/parser/test_parse_dates.py
Original file line number Diff line number Diff line change
Expand Up @@ -1538,7 +1538,12 @@ def test_date_parser_resolution_if_not_ns(all_parsers):
"""

def date_parser(dt, time):
return np.array(dt + "T" + time, dtype="datetime64[s]")
try:
arr = dt + "T" + time
except TypeError:
# dt & time are date/time objects
arr = [datetime.combine(d, t) for d, t in zip(dt, time)]
return np.array(arr, dtype="datetime64[s]")

result = parser.read_csv(
StringIO(data),
Expand Down
30 changes: 25 additions & 5 deletions pandas/tests/strings/test_find_replace.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,11 @@ def test_contains(any_string_dtype):
values = Series(values, dtype=any_string_dtype)
pat = "mmm[_]+"

result = values.str.contains(pat)
with tm.maybe_produces_warning(
PerformanceWarning,
any_string_dtype == "string[pyarrow]" and pa_version_under4p0,
):
result = values.str.contains(pat)
expected_dtype = "object" if any_string_dtype == "object" else "boolean"
expected = Series(
np.array([False, np.nan, True, True, False], dtype=np.object_),
Expand Down Expand Up @@ -88,7 +92,11 @@ def test_contains(any_string_dtype):
)
tm.assert_series_equal(result, expected)

result = values.str.contains(pat, na=False)
with tm.maybe_produces_warning(
PerformanceWarning,
any_string_dtype == "string[pyarrow]" and pa_version_under4p0,
):
result = values.str.contains(pat, na=False)
expected_dtype = np.bool_ if any_string_dtype == "object" else "boolean"
expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
tm.assert_series_equal(result, expected)
Expand Down Expand Up @@ -181,7 +189,11 @@ def test_contains_moar(any_string_dtype):
dtype=any_string_dtype,
)

result = s.str.contains("a")
with tm.maybe_produces_warning(
PerformanceWarning,
any_string_dtype == "string[pyarrow]" and pa_version_under4p0,
):
result = s.str.contains("a")
expected_dtype = "object" if any_string_dtype == "object" else "boolean"
expected = Series(
[False, False, False, True, True, False, np.nan, False, False, True],
Expand Down Expand Up @@ -619,7 +631,11 @@ def test_replace_moar(any_string_dtype):
dtype=any_string_dtype,
)

result = ser.str.replace("A", "YYY")
with tm.maybe_produces_warning(
PerformanceWarning,
any_string_dtype == "string[pyarrow]" and pa_version_under4p0,
):
result = ser.str.replace("A", "YYY")
expected = Series(
["YYY", "B", "C", "YYYaba", "Baca", "", np.nan, "CYYYBYYY", "dog", "cat"],
dtype=any_string_dtype,
Expand Down Expand Up @@ -727,7 +743,11 @@ def test_replace_regex_single_character(regex, any_string_dtype):
):
result = s.str.replace(".", "a", regex=regex)
else:
result = s.str.replace(".", "a", regex=regex)
with tm.maybe_produces_warning(
PerformanceWarning,
any_string_dtype == "string[pyarrow]" and pa_version_under4p0,
):
result = s.str.replace(".", "a", regex=regex)

expected = Series(["aab", "a", "b", np.nan, ""], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
Expand Down
6 changes: 5 additions & 1 deletion pandas/tests/strings/test_strings.py
Original file line number Diff line number Diff line change
Expand Up @@ -562,7 +562,11 @@ def test_slice_replace(start, stop, repl, expected, any_string_dtype):
def test_strip_lstrip_rstrip(any_string_dtype, method, exp):
ser = Series([" aa ", " bb \n", np.nan, "cc "], dtype=any_string_dtype)

result = getattr(ser.str, method)()
with tm.maybe_produces_warning(
PerformanceWarning,
any_string_dtype == "string[pyarrow]" and pa_version_under4p0,
):
result = getattr(ser.str, method)()
expected = Series(exp, dtype=any_string_dtype)
tm.assert_series_equal(result, expected)

Expand Down
4 changes: 2 additions & 2 deletions pandas/tests/window/test_numba.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def arithmetic_numba_supported_operators(request):


@td.skip_if_no("numba")
@pytest.mark.filterwarnings("ignore:\n")
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
class TestEngine:
@pytest.mark.parametrize("jit", [True, False])
Expand Down Expand Up @@ -331,7 +331,7 @@ def test_invalid_kwargs_nopython():

@td.skip_if_no("numba")
@pytest.mark.slow
@pytest.mark.filterwarnings("ignore:\n")
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
class TestTableMethod:
def test_table_series_valueerror(self):
Expand Down
3 changes: 2 additions & 1 deletion pandas/tests/window/test_online.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,8 @@


@td.skip_if_no("numba")
@pytest.mark.filterwarnings("ignore:\n")
@pytest.mark.filterwarnings("ignore")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
class TestEWM:
def test_invalid_update(self):
df = DataFrame({"a": range(5), "b": range(5)})
Expand Down
1 change: 0 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,6 @@ filterwarnings = [
"ignore:pandas.util.testing is deprecated:FutureWarning:importlib",
# Will be fixed in numba 0.56: https://github.com/numba/numba/issues/7758
"ignore:`np.MachAr` is deprecated:DeprecationWarning:numba",

]
junit_family = "xunit2"
markers = [
Expand Down