Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 12 additions & 3 deletions pymc/distributions/continuous.py
Original file line number Diff line number Diff line change
Expand Up @@ -1347,15 +1347,24 @@ class Exponential(PositiveContinuous):
----------
lam : tensor_like of float
Rate or inverse scale (``lam`` > 0).
scale: tensor_like of float
Alternative parameter (scale = 1/lam).
"""
rv_op = exponential

@classmethod
def dist(cls, lam: DIST_PARAMETER_TYPES, *args, **kwargs):
lam = pt.as_tensor_variable(floatX(lam))
def dist(cls, lam=None, scale=None, *args, **kwargs):
if lam is not None and scale is not None:
raise ValueError("Incompatible parametrization. Can't specify both lam and scale.")
elif lam is None and scale is None:
raise ValueError("Incompatible parametrization. Must specify either lam or scale.")

if scale is None:
scale = pt.reciprocal(lam)

scale = pt.as_tensor_variable(floatX(scale))
# PyTensor exponential op is parametrized in terms of mu (1/lam)
return super().dist([pt.reciprocal(lam)], **kwargs)
return super().dist([scale], **kwargs)

def moment(rv, size, mu):
if not rv_size_is_none(size):
Expand Down
16 changes: 16 additions & 0 deletions tests/distributions/test_continuous.py
Original file line number Diff line number Diff line change
Expand Up @@ -444,6 +444,15 @@ def test_exponential(self):
lambda q, lam: st.expon.ppf(q, loc=0, scale=1 / lam),
)

def test_exponential_wrong_arguments(self):
msg = "Incompatible parametrization. Can't specify both lam and scale"
with pytest.raises(ValueError, match=msg):
pm.Exponential.dist(lam=0.5, scale=5)

msg = "Incompatible parametrization. Must specify either lam or scale"
with pytest.raises(ValueError, match=msg):
pm.Exponential.dist()

def test_laplace(self):
check_logp(
pm.Laplace,
Expand Down Expand Up @@ -2091,6 +2100,13 @@ class TestExponential(BaseTestDistributionRandom):
]


class TestExponentialScale(BaseTestDistributionRandom):
pymc_dist = pm.Exponential
pymc_dist_params = {"scale": 5.0}
expected_rv_op_params = {"mu": pymc_dist_params["scale"]}
checks_to_run = ["check_pymc_params_match_rv_op"]


class TestCauchy(BaseTestDistributionRandom):
pymc_dist = pm.Cauchy
pymc_dist_params = {"alpha": 2.0, "beta": 5.0}
Expand Down