Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 24 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -2572,3 +2572,27 @@ def aten_ops_copy(
src.dtype,
force_layer=True,
)


@dynamo_tensorrt_converter(torch.ops.aten.remainder.Scalar)
@dynamo_tensorrt_converter(torch.ops.aten.remainder.Tensor)
@enforce_tensor_types(
{
0: (TRTTensor,),
}
)
def aten_ops_remainder(
ctx: ConversionContext,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
return impl.elementwise.remainder(
ctx,
target,
SourceIR.ATEN,
name,
args[0],
args[1],
)
35 changes: 35 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/impl/elementwise/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,6 +178,41 @@ def fmod(
return sub_value


def remainder(
ctx: ConversionContext,
target: Target,
source_ir: Optional[SourceIR],
name: str,
input: TRTTensor,
other: TRTTensor,
) -> TRTTensor:
fmod1_value = fmod(
ctx,
target,
source_ir,
f"{name}_fmod1",
input,
other,
)
added_value = add(
ctx,
target,
source_ir,
f"{name}_add",
fmod1_value,
other,
)
fmod2_value = fmod(
ctx,
target,
source_ir,
f"{name}_fmod2",
added_value,
other,
)
return fmod2_value


def clamp(
ctx: ConversionContext,
target: Target,
Expand Down
60 changes: 60 additions & 0 deletions tests/py/dynamo/conversion/test_remainder_aten.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import torch
import torch.nn as nn
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
from torch_tensorrt import Input

from .harness import DispatchTestCase


class TestRemainderConverter(DispatchTestCase):
@parameterized.expand(
[
("1d", (5,), 3),
("2d", (2, 1), 1.0),
("3d", (2, 1, 2), 2),
]
)
def test_remainder_scalar(self, _, shape, scalar):
class Remainder(nn.Module):
def forward(self, lhs_val):
return torch.ops.aten.remainder.Scalar(lhs_val, scalar)

inputs = [torch.randn(shape)]
self.run_test(
Remainder(),
inputs,
)

def test_remainder_scalar_int(self, scalar=3):
class Remainder(nn.Module):
def forward(self, lhs_val):
return torch.ops.aten.remainder.Scalar(lhs_val, scalar)

inputs = [torch.tensor([0, 1, 2, 3, 4, -1, -2, -3, -4], dtype=torch.float32)]
self.run_test(
Remainder(),
inputs,
)

@parameterized.expand(
[
("1d", (5,)),
("2d", (2, 1)),
("3d", (2, 1, 2)),
]
)
def test_remainder_tensor(self, _, shape):
class Remainder(nn.Module):
def forward(self, lhs_val, rhs_val):
return torch.ops.aten.remainder.Tensor(lhs_val, rhs_val)

inputs = [torch.randn(shape), torch.randn(shape)]
self.run_test(
Remainder(),
inputs,
)


if __name__ == "__main__":
run_tests()