-
Couldn't load subscription status.
- Fork 6.8k
Wait until data is ready to read in manager_tests. #13
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
…ECKM print a backgrace
devin-petersohn
pushed a commit
that referenced
this pull request
May 4, 2018
* implement filter * begin implementation of dropna * implement dropna * docs and tests * resolving comments * resolving merge * add error checking to dropna * fix update inplace call * Implement multiple axis for dropna (#13) * Implement multiple axis for dropna * Add multiple axis dropna test * Fix using dummy_frame in dropna * Clean up dropna multiple axis tests * remove unnecessary axis modification * Clean up dropna tests * resolve comments * fix lint
richardliaw
referenced
this pull request
in richardliaw/ray
Aug 7, 2018
Updates last output string to use ray exec
hartikainen
referenced
this pull request
in hartikainen/ray
Mar 7, 2019
Tune cli to be merged to ray
2 tasks
kfstorm
added a commit
that referenced
this pull request
Jul 27, 2022
We encountered SIGSEGV when running Python test `python/ray/tests/test_failure_2.py::test_list_named_actors_timeout`. The stack is: ``` #0 0x00007fffed30f393 in std::basic_string<char, std::char_traits<char>, std::allocator<char> >::basic_string(std::string const&) () from /lib64/libstdc++.so.6 #1 0x00007fffee707649 in ray::RayLog::GetLoggerName() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so #2 0x00007fffee70aa90 in ray::SpdLogMessage::Flush() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so #3 0x00007fffee70af28 in ray::RayLog::~RayLog() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so #4 0x00007fffee2b570d in ray::asio::testing::(anonymous namespace)::DelayManager::Init() [clone .constprop.0] () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so #5 0x00007fffedd0d95a in _GLOBAL__sub_I_asio_chaos.cc () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so #6 0x00007ffff7fe282a in call_init.part () from /lib64/ld-linux-x86-64.so.2 #7 0x00007ffff7fe2931 in _dl_init () from /lib64/ld-linux-x86-64.so.2 #8 0x00007ffff7fe674c in dl_open_worker () from /lib64/ld-linux-x86-64.so.2 #9 0x00007ffff7b82e79 in _dl_catch_exception () from /lib64/libc.so.6 #10 0x00007ffff7fe5ffe in _dl_open () from /lib64/ld-linux-x86-64.so.2 #11 0x00007ffff7d5f39c in dlopen_doit () from /lib64/libdl.so.2 #12 0x00007ffff7b82e79 in _dl_catch_exception () from /lib64/libc.so.6 #13 0x00007ffff7b82f13 in _dl_catch_error () from /lib64/libc.so.6 #14 0x00007ffff7d5fb09 in _dlerror_run () from /lib64/libdl.so.2 #15 0x00007ffff7d5f42a in dlopen@@GLIBC_2.2.5 () from /lib64/libdl.so.2 #16 0x00007fffef04d330 in py_dl_open (self=<optimized out>, args=<optimized out>) at /tmp/python-build.20220507135524.257789/Python-3.7.11/Modules/_ctypes/callproc.c:1369 ``` The root cause is that when loading `_raylet.so`, `static DelayManager _delay_manager` is initialized and `RAY_LOG(ERROR) << "RAY_testing_asio_delay_us is set to " << delay_env;` is executed. However, the static variables declared in `logging.cc` are not initialized yet (in this case, `std::string RayLog::logger_name_ = "ray_log_sink"`). It's better not to rely on the initialization order of static variables in different compilation units because it's not guaranteed. I propose to change all `RAY_LOG`s to `std::cerr` in `DelayManager::Init()`. The crash happens in Ant's internal codebase. Not sure why this test case passes in the community version though. BTW, I've tried different approaches: 1. Using a static local variable in `get_delay_us` and remove the global variable. This doesn't work because `init()` needs to access the variable as well. 2. Defining the global variable as type `std::unique_ptr<DelayManager>` and initialize it in `get_delay_us`. This works but it requires a lock to be thread-safe.
Rohan138
pushed a commit
to Rohan138/ray
that referenced
this pull request
Jul 28, 2022
We encountered SIGSEGV when running Python test `python/ray/tests/test_failure_2.py::test_list_named_actors_timeout`. The stack is: ``` #0 0x00007fffed30f393 in std::basic_string<char, std::char_traits<char>, std::allocator<char> >::basic_string(std::string const&) () from /lib64/libstdc++.so.6 ray-project#1 0x00007fffee707649 in ray::RayLog::GetLoggerName() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so ray-project#2 0x00007fffee70aa90 in ray::SpdLogMessage::Flush() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so ray-project#3 0x00007fffee70af28 in ray::RayLog::~RayLog() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so ray-project#4 0x00007fffee2b570d in ray::asio::testing::(anonymous namespace)::DelayManager::Init() [clone .constprop.0] () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so ray-project#5 0x00007fffedd0d95a in _GLOBAL__sub_I_asio_chaos.cc () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so ray-project#6 0x00007ffff7fe282a in call_init.part () from /lib64/ld-linux-x86-64.so.2 ray-project#7 0x00007ffff7fe2931 in _dl_init () from /lib64/ld-linux-x86-64.so.2 ray-project#8 0x00007ffff7fe674c in dl_open_worker () from /lib64/ld-linux-x86-64.so.2 ray-project#9 0x00007ffff7b82e79 in _dl_catch_exception () from /lib64/libc.so.6 ray-project#10 0x00007ffff7fe5ffe in _dl_open () from /lib64/ld-linux-x86-64.so.2 ray-project#11 0x00007ffff7d5f39c in dlopen_doit () from /lib64/libdl.so.2 ray-project#12 0x00007ffff7b82e79 in _dl_catch_exception () from /lib64/libc.so.6 ray-project#13 0x00007ffff7b82f13 in _dl_catch_error () from /lib64/libc.so.6 ray-project#14 0x00007ffff7d5fb09 in _dlerror_run () from /lib64/libdl.so.2 ray-project#15 0x00007ffff7d5f42a in dlopen@@GLIBC_2.2.5 () from /lib64/libdl.so.2 ray-project#16 0x00007fffef04d330 in py_dl_open (self=<optimized out>, args=<optimized out>) at /tmp/python-build.20220507135524.257789/Python-3.7.11/Modules/_ctypes/callproc.c:1369 ``` The root cause is that when loading `_raylet.so`, `static DelayManager _delay_manager` is initialized and `RAY_LOG(ERROR) << "RAY_testing_asio_delay_us is set to " << delay_env;` is executed. However, the static variables declared in `logging.cc` are not initialized yet (in this case, `std::string RayLog::logger_name_ = "ray_log_sink"`). It's better not to rely on the initialization order of static variables in different compilation units because it's not guaranteed. I propose to change all `RAY_LOG`s to `std::cerr` in `DelayManager::Init()`. The crash happens in Ant's internal codebase. Not sure why this test case passes in the community version though. BTW, I've tried different approaches: 1. Using a static local variable in `get_delay_us` and remove the global variable. This doesn't work because `init()` needs to access the variable as well. 2. Defining the global variable as type `std::unique_ptr<DelayManager>` and initialize it in `get_delay_us`. This works but it requires a lock to be thread-safe. Signed-off-by: Rohan138 <[email protected]>
Stefan-1313
pushed a commit
to Stefan-1313/ray_mod
that referenced
this pull request
Aug 18, 2022
We encountered SIGSEGV when running Python test `python/ray/tests/test_failure_2.py::test_list_named_actors_timeout`. The stack is: ``` #0 0x00007fffed30f393 in std::basic_string<char, std::char_traits<char>, std::allocator<char> >::basic_string(std::string const&) () from /lib64/libstdc++.so.6 ray-project#1 0x00007fffee707649 in ray::RayLog::GetLoggerName() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so ray-project#2 0x00007fffee70aa90 in ray::SpdLogMessage::Flush() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so ray-project#3 0x00007fffee70af28 in ray::RayLog::~RayLog() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so ray-project#4 0x00007fffee2b570d in ray::asio::testing::(anonymous namespace)::DelayManager::Init() [clone .constprop.0] () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so ray-project#5 0x00007fffedd0d95a in _GLOBAL__sub_I_asio_chaos.cc () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so ray-project#6 0x00007ffff7fe282a in call_init.part () from /lib64/ld-linux-x86-64.so.2 ray-project#7 0x00007ffff7fe2931 in _dl_init () from /lib64/ld-linux-x86-64.so.2 ray-project#8 0x00007ffff7fe674c in dl_open_worker () from /lib64/ld-linux-x86-64.so.2 ray-project#9 0x00007ffff7b82e79 in _dl_catch_exception () from /lib64/libc.so.6 ray-project#10 0x00007ffff7fe5ffe in _dl_open () from /lib64/ld-linux-x86-64.so.2 ray-project#11 0x00007ffff7d5f39c in dlopen_doit () from /lib64/libdl.so.2 ray-project#12 0x00007ffff7b82e79 in _dl_catch_exception () from /lib64/libc.so.6 ray-project#13 0x00007ffff7b82f13 in _dl_catch_error () from /lib64/libc.so.6 ray-project#14 0x00007ffff7d5fb09 in _dlerror_run () from /lib64/libdl.so.2 ray-project#15 0x00007ffff7d5f42a in dlopen@@GLIBC_2.2.5 () from /lib64/libdl.so.2 ray-project#16 0x00007fffef04d330 in py_dl_open (self=<optimized out>, args=<optimized out>) at /tmp/python-build.20220507135524.257789/Python-3.7.11/Modules/_ctypes/callproc.c:1369 ``` The root cause is that when loading `_raylet.so`, `static DelayManager _delay_manager` is initialized and `RAY_LOG(ERROR) << "RAY_testing_asio_delay_us is set to " << delay_env;` is executed. However, the static variables declared in `logging.cc` are not initialized yet (in this case, `std::string RayLog::logger_name_ = "ray_log_sink"`). It's better not to rely on the initialization order of static variables in different compilation units because it's not guaranteed. I propose to change all `RAY_LOG`s to `std::cerr` in `DelayManager::Init()`. The crash happens in Ant's internal codebase. Not sure why this test case passes in the community version though. BTW, I've tried different approaches: 1. Using a static local variable in `get_delay_us` and remove the global variable. This doesn't work because `init()` needs to access the variable as well. 2. Defining the global variable as type `std::unique_ptr<DelayManager>` and initialize it in `get_delay_us`. This works but it requires a lock to be thread-safe. Signed-off-by: Stefan van der Kleij <[email protected]>
8 tasks
sven1977
added a commit
that referenced
this pull request
Jun 12, 2024
richardsliu
pushed a commit
to richardsliu/ray
that referenced
this pull request
Jun 12, 2024
…s page for RLlib. (ray-project#45382) Signed-off-by: Richard Liu <[email protected]>
edoakes
pushed a commit
that referenced
this pull request
Aug 21, 2025
… condition (#55367) ## Why are these changes needed? Workers crash with a fatal `RAY_CHECK` failure when the plasma store connection is broken during shutdown, causing the following error: ``` RAY_CHECK failed: PutInLocalPlasmaStore(object, object_id, true) Status not OK: IOError: Broken pipe ``` Stacktrace: ``` core_worker.cc:720 C Check failed: PutInLocalPlasmaStore(object, object_id, true) Status not OK: IOError: Broken pipe *** StackTrace Information *** /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x141789a) [0x7924dd2c689a] ray::operator<<() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray6RayLogD1Ev+0x479) [0x7924dd2c9319] ray::RayLog::~RayLog() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x95cc8a) [0x7924dc80bc8a] ray::core::CoreWorker::CoreWorker()::{lambda()#13}::operator()() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray4core11TaskManager27MarkTaskReturnObjectsFailedERKNS_17TaskSpecificationENS_3rpc9ErrorTypeEPKNS5_12RayErrorInfoERKN4absl12lts_2023080213flat_hash_setINS_8ObjectIDENSB_13hash_internal4HashISD_EESt8equal_toISD_ESaISD_EEE+0x679) [0x7924dc868f29] ray::core::TaskManager::MarkTaskReturnObjectsFailed() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray4core11TaskManager15FailPendingTaskERKNS_6TaskIDENS_3rpc9ErrorTypeEPKNS_6StatusEPKNS5_12RayErrorInfoE+0x416) [0x7924dc86f186] ray::core::TaskManager::FailPendingTask() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x9a90e6) [0x7924dc8580e6] ray::core::NormalTaskSubmitter::RequestNewWorkerIfNeeded()::{lambda()#1}::operator()() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray3rpc14ClientCallImplINS0_23RequestWorkerLeaseReplyEE15OnReplyReceivedEv+0x68) [0x7924dc94aa48] ray::rpc::ClientCallImpl<>::OnReplyReceived() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZNSt17_Function_handlerIFvvEZN3ray3rpc17ClientCallManager29PollEventsFromCompletionQueueEiEUlvE_E9_M_invokeERKSt9_Any_data+0x15) [0x7924dc79e285] std::_Function_handler<>::_M_invoke() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xd9b4c8) [0x7924dcc4a4c8] EventTracker::RecordExecution() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xd4648e) [0x7924dcbf548e] std::_Function_handler<>::_M_invoke() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xd46906) [0x7924dcbf5906] boost::asio::detail::completion_handler<>::do_complete() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x13f417b) [0x7924dd2a317b] boost::asio::detail::scheduler::do_run_one() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x13f5af9) [0x7924dd2a4af9] boost::asio::detail::scheduler::run() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x13f6202) [0x7924dd2a5202] boost::asio::io_context::run() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray4core10CoreWorker12RunIOServiceEv+0x91) [0x7924dc793a61] ray::core::CoreWorker::RunIOService() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xcba0b0) [0x7924dcb690b0] thread_proxy /lib/x86_64-linux-gnu/libc.so.6(+0x94ac3) [0x7924dde71ac3] /lib/x86_64-linux-gnu/libc.so.6(+0x126850) [0x7924ddf03850] ``` Stack trace flow: 1. Task lease request fails -> `NormalTaskSubmitter::RequestNewWorkerIfNeeded()` callback. 2. Triggers `TaskManager::FailPendingTask()` -> `MarkTaskReturnObjectsFailed()`. 3. System attempts to store error objects in plasma via `put_in_local_plasma_callback_`. 4. Plasma connection is broken (raylet/plasma store already shut down). 5. `RAY_CHECK_OK()` in the callback causes fatal crash instead of graceful handling. Root Cause: This is a shutdown ordering race condition: 1. Raylet shuts down first: The raylet stops its IO context ([main_service_.stop()](https://github.com/ray-project/ray/blob/77c5475195e56a26891d88460973198391d20edf/src/ray/object_manager/plasma/store_runner.cc#L146)) which closes plasma store connections. 2. Worker still processes callbacks: Core worker continues processing pending callbacks on separate threads. 3. Broken connection: When the callback tries to store error objects in plasma, the connection is already closed. 4. Fatal crash: The `RAY_CHECK_OK()` treats this as an unexpected error and crashes the process. Fix: 1. Shutdown-aware plasma operations - Add `CoreWorker::IsShuttingDown()` method to check shutdown state. - Skip plasma operations entirely when shutdown is in progress. - Prevents attempting operations on already-closed connections. 2. Targeted error handling for connection failures - Replace blanket `RAY_CHECK_OK()` with specific error type checking. - Handle connection errors (Broken pipe, Connection reset, Bad file descriptor) as warnings during shutdown scenarios. - Maintain `RAY_CHECK_OK()` for other error types to catch real issues. --------- Signed-off-by: Sagar Sumit <[email protected]>
jugalshah291
pushed a commit
to jugalshah291/ray_fork
that referenced
this pull request
Sep 11, 2025
… condition (ray-project#55367) ## Why are these changes needed? Workers crash with a fatal `RAY_CHECK` failure when the plasma store connection is broken during shutdown, causing the following error: ``` RAY_CHECK failed: PutInLocalPlasmaStore(object, object_id, true) Status not OK: IOError: Broken pipe ``` Stacktrace: ``` core_worker.cc:720 C Check failed: PutInLocalPlasmaStore(object, object_id, true) Status not OK: IOError: Broken pipe *** StackTrace Information *** /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x141789a) [0x7924dd2c689a] ray::operator<<() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray6RayLogD1Ev+0x479) [0x7924dd2c9319] ray::RayLog::~RayLog() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x95cc8a) [0x7924dc80bc8a] ray::core::CoreWorker::CoreWorker()::{lambda()ray-project#13}::operator()() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray4core11TaskManager27MarkTaskReturnObjectsFailedERKNS_17TaskSpecificationENS_3rpc9ErrorTypeEPKNS5_12RayErrorInfoERKN4absl12lts_2023080213flat_hash_setINS_8ObjectIDENSB_13hash_internal4HashISD_EESt8equal_toISD_ESaISD_EEE+0x679) [0x7924dc868f29] ray::core::TaskManager::MarkTaskReturnObjectsFailed() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray4core11TaskManager15FailPendingTaskERKNS_6TaskIDENS_3rpc9ErrorTypeEPKNS_6StatusEPKNS5_12RayErrorInfoE+0x416) [0x7924dc86f186] ray::core::TaskManager::FailPendingTask() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x9a90e6) [0x7924dc8580e6] ray::core::NormalTaskSubmitter::RequestNewWorkerIfNeeded()::{lambda()ray-project#1}::operator()() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray3rpc14ClientCallImplINS0_23RequestWorkerLeaseReplyEE15OnReplyReceivedEv+0x68) [0x7924dc94aa48] ray::rpc::ClientCallImpl<>::OnReplyReceived() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZNSt17_Function_handlerIFvvEZN3ray3rpc17ClientCallManager29PollEventsFromCompletionQueueEiEUlvE_E9_M_invokeERKSt9_Any_data+0x15) [0x7924dc79e285] std::_Function_handler<>::_M_invoke() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xd9b4c8) [0x7924dcc4a4c8] EventTracker::RecordExecution() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xd4648e) [0x7924dcbf548e] std::_Function_handler<>::_M_invoke() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xd46906) [0x7924dcbf5906] boost::asio::detail::completion_handler<>::do_complete() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x13f417b) [0x7924dd2a317b] boost::asio::detail::scheduler::do_run_one() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x13f5af9) [0x7924dd2a4af9] boost::asio::detail::scheduler::run() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x13f6202) [0x7924dd2a5202] boost::asio::io_context::run() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray4core10CoreWorker12RunIOServiceEv+0x91) [0x7924dc793a61] ray::core::CoreWorker::RunIOService() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xcba0b0) [0x7924dcb690b0] thread_proxy /lib/x86_64-linux-gnu/libc.so.6(+0x94ac3) [0x7924dde71ac3] /lib/x86_64-linux-gnu/libc.so.6(+0x126850) [0x7924ddf03850] ``` Stack trace flow: 1. Task lease request fails -> `NormalTaskSubmitter::RequestNewWorkerIfNeeded()` callback. 2. Triggers `TaskManager::FailPendingTask()` -> `MarkTaskReturnObjectsFailed()`. 3. System attempts to store error objects in plasma via `put_in_local_plasma_callback_`. 4. Plasma connection is broken (raylet/plasma store already shut down). 5. `RAY_CHECK_OK()` in the callback causes fatal crash instead of graceful handling. Root Cause: This is a shutdown ordering race condition: 1. Raylet shuts down first: The raylet stops its IO context ([main_service_.stop()](https://github.com/ray-project/ray/blob/77c5475195e56a26891d88460973198391d20edf/src/ray/object_manager/plasma/store_runner.cc#L146)) which closes plasma store connections. 2. Worker still processes callbacks: Core worker continues processing pending callbacks on separate threads. 3. Broken connection: When the callback tries to store error objects in plasma, the connection is already closed. 4. Fatal crash: The `RAY_CHECK_OK()` treats this as an unexpected error and crashes the process. Fix: 1. Shutdown-aware plasma operations - Add `CoreWorker::IsShuttingDown()` method to check shutdown state. - Skip plasma operations entirely when shutdown is in progress. - Prevents attempting operations on already-closed connections. 2. Targeted error handling for connection failures - Replace blanket `RAY_CHECK_OK()` with specific error type checking. - Handle connection errors (Broken pipe, Connection reset, Bad file descriptor) as warnings during shutdown scenarios. - Maintain `RAY_CHECK_OK()` for other error types to catch real issues. --------- Signed-off-by: Sagar Sumit <[email protected]> Signed-off-by: jugalshah291 <[email protected]>
dstrodtman
pushed a commit
that referenced
this pull request
Oct 6, 2025
… condition (#55367) ## Why are these changes needed? Workers crash with a fatal `RAY_CHECK` failure when the plasma store connection is broken during shutdown, causing the following error: ``` RAY_CHECK failed: PutInLocalPlasmaStore(object, object_id, true) Status not OK: IOError: Broken pipe ``` Stacktrace: ``` core_worker.cc:720 C Check failed: PutInLocalPlasmaStore(object, object_id, true) Status not OK: IOError: Broken pipe *** StackTrace Information *** /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x141789a) [0x7924dd2c689a] ray::operator<<() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray6RayLogD1Ev+0x479) [0x7924dd2c9319] ray::RayLog::~RayLog() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x95cc8a) [0x7924dc80bc8a] ray::core::CoreWorker::CoreWorker()::{lambda()#13}::operator()() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray4core11TaskManager27MarkTaskReturnObjectsFailedERKNS_17TaskSpecificationENS_3rpc9ErrorTypeEPKNS5_12RayErrorInfoERKN4absl12lts_2023080213flat_hash_setINS_8ObjectIDENSB_13hash_internal4HashISD_EESt8equal_toISD_ESaISD_EEE+0x679) [0x7924dc868f29] ray::core::TaskManager::MarkTaskReturnObjectsFailed() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray4core11TaskManager15FailPendingTaskERKNS_6TaskIDENS_3rpc9ErrorTypeEPKNS_6StatusEPKNS5_12RayErrorInfoE+0x416) [0x7924dc86f186] ray::core::TaskManager::FailPendingTask() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x9a90e6) [0x7924dc8580e6] ray::core::NormalTaskSubmitter::RequestNewWorkerIfNeeded()::{lambda()#1}::operator()() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray3rpc14ClientCallImplINS0_23RequestWorkerLeaseReplyEE15OnReplyReceivedEv+0x68) [0x7924dc94aa48] ray::rpc::ClientCallImpl<>::OnReplyReceived() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZNSt17_Function_handlerIFvvEZN3ray3rpc17ClientCallManager29PollEventsFromCompletionQueueEiEUlvE_E9_M_invokeERKSt9_Any_data+0x15) [0x7924dc79e285] std::_Function_handler<>::_M_invoke() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xd9b4c8) [0x7924dcc4a4c8] EventTracker::RecordExecution() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xd4648e) [0x7924dcbf548e] std::_Function_handler<>::_M_invoke() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xd46906) [0x7924dcbf5906] boost::asio::detail::completion_handler<>::do_complete() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x13f417b) [0x7924dd2a317b] boost::asio::detail::scheduler::do_run_one() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x13f5af9) [0x7924dd2a4af9] boost::asio::detail::scheduler::run() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x13f6202) [0x7924dd2a5202] boost::asio::io_context::run() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray4core10CoreWorker12RunIOServiceEv+0x91) [0x7924dc793a61] ray::core::CoreWorker::RunIOService() /home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xcba0b0) [0x7924dcb690b0] thread_proxy /lib/x86_64-linux-gnu/libc.so.6(+0x94ac3) [0x7924dde71ac3] /lib/x86_64-linux-gnu/libc.so.6(+0x126850) [0x7924ddf03850] ``` Stack trace flow: 1. Task lease request fails -> `NormalTaskSubmitter::RequestNewWorkerIfNeeded()` callback. 2. Triggers `TaskManager::FailPendingTask()` -> `MarkTaskReturnObjectsFailed()`. 3. System attempts to store error objects in plasma via `put_in_local_plasma_callback_`. 4. Plasma connection is broken (raylet/plasma store already shut down). 5. `RAY_CHECK_OK()` in the callback causes fatal crash instead of graceful handling. Root Cause: This is a shutdown ordering race condition: 1. Raylet shuts down first: The raylet stops its IO context ([main_service_.stop()](https://github.com/ray-project/ray/blob/77c5475195e56a26891d88460973198391d20edf/src/ray/object_manager/plasma/store_runner.cc#L146)) which closes plasma store connections. 2. Worker still processes callbacks: Core worker continues processing pending callbacks on separate threads. 3. Broken connection: When the callback tries to store error objects in plasma, the connection is already closed. 4. Fatal crash: The `RAY_CHECK_OK()` treats this as an unexpected error and crashes the process. Fix: 1. Shutdown-aware plasma operations - Add `CoreWorker::IsShuttingDown()` method to check shutdown state. - Skip plasma operations entirely when shutdown is in progress. - Prevents attempting operations on already-closed connections. 2. Targeted error handling for connection failures - Replace blanket `RAY_CHECK_OK()` with specific error type checking. - Handle connection errors (Broken pipe, Connection reset, Bad file descriptor) as warnings during shutdown scenarios. - Maintain `RAY_CHECK_OK()` for other error types to catch real issues. --------- Signed-off-by: Sagar Sumit <[email protected]> Signed-off-by: Douglas Strodtman <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
The following sometimes failed before, but it should work now.
pcmoritz: Also added printing backtraces in CHECK and CHECKM like so: