Skip to content

ronamit/Meta_PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Implementation of the Meta-Learning-by-Adjusting-Priors algorithm in PyTorch

Prerequisites

Data

All data sets (except ImageNet) are downloaded automatically. Specify the main data path in the file 'Data_Path.py'. For ImageNet see Utils/Resize_ImageNet.py

Reproducing experiments in the paper:

  • PriorMetaLearning/run_MPB_*.py - Learns a prior from the obsereved (meta-training) tasks and use it to learn new (meta-test) tasks.

  • Toy_Examples/Toy_Main.py - Toy example of 2D estimation.

  • Single_Task/main_TwoTaskTransfer_PermuteLabels and Single_Task/main_TwoTaskTransfer_PermutePixels.py - run alternative tranfer methods.

  • PriorMetaLearning/Analyze_Prior.py - Analysis of the weight uncertainty ine each layer of the learned prior (run after creating a prior with main_Meta_Bayes.py)

Other experiments:

  • Single_Task/main_single_standard.py - Learn standard neural network in a single task.
  • Single_Task/main_single_Bayes.py - Learn stochastic neural network in a single task.

MAML code is based on: https://github.com/katerakelly/pytorch-maml

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages