Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
.DS_Store
.vscode
8 changes: 4 additions & 4 deletions plonk-intro-cn/2-plonk-lagrange-basis.md
Original file line number Diff line number Diff line change
Expand Up @@ -227,10 +227,10 @@ $$
还拿 $\mathbb{F}_{13}$ 为例,我们取 $H=(1,5,12,8)$,并且乘法群的生成元 $g=2$。于是我们可以得到下面两个 Coset:

$$
\begin{split}
H_1 &= g\cdot H = (g, g\omega, g\omega^2, g\omega^3) &= (2,10,11,3) \\
H_2 &= g^2\cdot H = (g^2, g^2\omega, g^2\omega^2, g^2\omega^3) &= (4,7,9,6) \\
\end{split}
\begin{aligned}
H_1 &= g\cdot H = (g, g\omega, g\omega^2, g\omega^3) = (2,10,11,3) \\
H_2 &= g^2\cdot H = (g^2, g^2\omega, g^2\omega^2, g^2\omega^3) = (4,7,9,6) \\
\end{aligned}
$$

可以看到 $\mathbb{F}^*_{13}=H\cup H_1 \cup H_2$,并且它们交集为空,没有任何重叠。并且它们的 Vanishing Polynomial 也可以快速计算:
Expand Down
6 changes: 3 additions & 3 deletions plonk-intro-cn/3-plonk-permutation.md
Original file line number Diff line number Diff line change
Expand Up @@ -113,9 +113,9 @@ $$
\begin{array}{c|c|c}
q_i & r_i & q_i\cdot r_i \\
\hline
q_0 & 1 & r_0\\
q_1 & r_0 & r_1\\
q_2 & r_1 & r_2\\
q_0 & r_0=1 & r_1\\
q_1 & r_1 & r_2\\
q_2 & r_2 & r_3\\
\vdots & \vdots & \vdots\\
q_{n-2} & r_{n-2} & r_{n-1}\\
q_{n-1}=\frac{1}{p} & r_{n-1} & 1 \\
Expand Down