-
-
Couldn't load subscription status.
- Fork 10.9k
Description
Your current environment
The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.31.4
Libc version: glibc-2.35
Python version: 3.12.8 (main, Dec 4 2024, 08:54:12) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.4.0-162-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H20
GPU 1: NVIDIA H20
GPU 2: NVIDIA H20
GPU 3: NVIDIA H20
GPU 4: NVIDIA H20
GPU 5: NVIDIA H20
GPU 6: NVIDIA H20
GPU 7: NVIDIA H20
Nvidia driver version: 535.161.08
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 180
On-line CPU(s) list: 0-179
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8457C
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 45
Socket(s): 2
Stepping: 8
BogoMIPS: 5200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 wbnoinvd arat avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid cldemote movdiri movdir64b md_clear arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 4.2 MiB (90 instances)
L1i cache: 2.8 MiB (90 instances)
L2 cache: 180 MiB (90 instances)
L3 cache: 195 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-89
NUMA node1 CPU(s): 90-179
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Unknown: No mitigations
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.1
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.48.2
[pip3] triton==3.2.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.1.dev5307+g65c8274 (git sha: 65c8274
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 SYS PIX NODE SYS SYS 0-89 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 SYS PIX NODE SYS SYS 0-89 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 SYS NODE PIX SYS SYS 0-89 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 SYS NODE PIX SYS SYS 0-89 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS PIX NODE 90-179 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS PIX NODE 90-179 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS NODE PIX 90-179 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS NODE PIX 90-179 1 N/A
NIC0 SYS SYS SYS SYS SYS SYS SYS SYS X SYS SYS SYS SYS
NIC1 PIX PIX NODE NODE SYS SYS SYS SYS SYS X NODE SYS SYS
NIC2 NODE NODE PIX PIX SYS SYS SYS SYS SYS NODE X SYS SYS
NIC3 SYS SYS SYS SYS PIX PIX NODE NODE SYS SYS SYS X NODE
NIC4 SYS SYS SYS SYS NODE NODE PIX PIX SYS SYS SYS NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
NCCL_VERSION=2.17.1-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
VLLM_USAGE_SOURCE=production-docker-image
NVIDIA_CUDA_END_OF_LIFE=1
CUDA_VERSION=12.1.0
VLLM_FLASH_ATTN_VERSION=3
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
Description
The code in #13454 hasn't been merged for nearly a week. As a result, the code that could run previously can no longer work properly. However, if I roll back the code to the state it was in a week ago, everything runs fine again.
Error Logs
Here are some of the error messages I'm getting:
ERROR 03-20 09:51:26 [core.py:340] File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
ERROR 03-20 09:51:26 [core.py:340] return self._call_impl(*args, **kwargs)
ERROR 03-20 09:51:26 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-20 09:51:26 [core.py:340] File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1750, in _call_impl
ERROR 03-20 09:51:26 [core.py:340] return forward_call(*args, **kwargs)
ERROR 03-20 09:51:26 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-20 09:51:26 [core.py:340] File "/data4/qinggangying/qingjun/vllm/vllm/model_executor/models/minimax_text_01.py", line 1031, in forward
ERROR 03-20 09:51:26 [core.py:340] hidden_states = self.model(input_ids, positions, self.kv_cache,
ERROR 03-20 09:51:26 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-20 09:51:26 [core.py:340] File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
ERROR 03-20 09:51:26 [core.py:340] return self._call_impl(*args, **kwargs)
ERROR 03-20 09:51:26 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-20 09:51:26 [core.py:340] File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1750, in _call_impl
ERROR 03-20 09:51:26 [core.py:340] return forward_call(*args, **kwargs)
ERROR 03-20 09:51:26 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-20 09:51:26 [core.py:340] File "/data4/qinggangying/qingjun/vllm/vllm/model_executor/models/minimax_text_01.py", line 921, in forward
ERROR 03-20 09:51:26 [core.py:340] if attn_metadata.num_prefills > 0:
ERROR 03-20 09:51:26 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-20 09:51:26 [core.py:340] AttributeError: 'FlashAttentionMetadata' object has no attribute 'num_prefills'
ERROR 03-20 08:32:16 [core.py:340] File "/usr/local/lib/python3.12/dist-packages/torch/_ops.py", line 1123, in __call__
ERROR 03-20 08:32:16 [core.py:340] return self._op(*args, **(kwargs or {}))
ERROR 03-20 08:32:16 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-20 08:32:16 [core.py:340] File "/data4/qinggangying/qingjun/vllm/vllm/attention/layer.py", line 368, in unified_attention_with_output
ERROR 03-20 08:32:16 [core.py:340] self.impl.forward(self,
ERROR 03-20 08:32:16 [core.py:340] File "/data4/qinggangying/qingjun/vllm/vllm/v1/attention/backends/flash_attn.py", line 281, in forward
ERROR 03-20 08:32:16 [core.py:340] flash_attn_varlen_func(
ERROR 03-20 08:32:16 [core.py:340] TypeError: flash_attn_varlen_func() got an unexpected keyword argument 'q_descale'
There are many more error messages like these.
Investigation
The main problem seems to be related to FlashAttentionMetadata. The recent commits related to FlashAttentionMetadata can be found here: https://github.com/vllm-project/vllm/pull/14570/files.
This is also exactly where the errors occur.
I'm not sure how to fix this code at the moment. I suspect that supporting Flash_attn3 is required to support the corresponding parameters. If I try to comment out some code or do defensive programming, more issues will arise.
There are my run model code:
python3 -m vllm.entrypoints.api_server \
--model /minimax-algeng-rw/minimax-algeng/qingangying/download/MiniMax-Text-01 \
--tensor-parallel-size 8 \
--trust-remote-code \
--quantization experts_int8 \
--max_model_len 4096 \
--dtype bfloat16
Please help me resolve this problem. Thanks!
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.