Skip to content

[Bug][V1] 'PixtralVisionConfig' object has no attribute 'spatial_merge_size' in 0.8.5 #17565

@lk-chen

Description

@lk-chen

Your current environment

The output of python collect_env.py
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.11.11 | packaged by conda-forge | (main, Mar  3 2025, 20:43:55) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-6.5.0-1024-aws-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA L4
GPU 1: NVIDIA L4
GPU 2: NVIDIA L4
GPU 3: NVIDIA L4

Nvidia driver version: 550.163.01
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             48
On-line CPU(s) list:                0-47
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7R13 Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 24
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           5299.99
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          768 KiB (24 instances)
L1i cache:                          768 KiB (24 instances)
L2 cache:                           12 MiB (24 instances)
L3 cache:                           96 MiB (3 instances)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-47
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.0.3
[pip3] torch==2.6.0+cu124
[pip3] torchaudio==2.6.0+cu124
[pip3] torchvision==0.21.0+cu124
[pip3] transformers==4.51.3
[pip3] triton==3.2.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.2                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pyzmq                     26.0.3                   pypi_0    pypi
[conda] torch                     2.6.0+cu124              pypi_0    pypi
[conda] torchaudio                2.6.0+cu124              pypi_0    pypi
[conda] torchvision               0.21.0+cu124             pypi_0    pypi
[conda] transformers              4.51.3                   pypi_0    pypi
[conda] triton                    3.2.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.5
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      SYS     SYS     SYS     0-47    0               N/A
GPU1    SYS      X      SYS     SYS     0-47    0               N/A
GPU2    SYS     SYS      X      SYS     0-47    0               N/A
GPU3    SYS     SYS     SYS      X      0-47    0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NVIDIA_VISIBLE_DEVICES=void
NVIDIA_REQUIRE_CUDA=cuda>=12.4 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 brand=tesla,driver>=535,driver<536 brand=unknown,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=geforce,driver>=535,driver<536 brand=geforcertx,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=titan,driver>=535,driver<536 brand=titanrtx,driver>=535,driver<536
NCCL_VERSION=2.21.5-1
NCCL_SOCKET_IFNAME=^lo,docker,veth,tailscale,anyscale
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
CUDA_VERSION=12.4.1
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

With #17270 , pixtral-community/pixtral-12b failed. I think what we did in #17270 and other similar places are too hacky: we insert attributes randomly

python ../vllm/examples/offline_inference/vision_language.py -m pixtral_hf

output

  File "~/vllm/vllm/multimodal/processing.py", line 787, in apply_token_matches
    token_id_seqs = _apply_matches(prompt, mm_matches, mm_item_counts)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "~/vllm/vllm/multimodal/processing.py", line 764, in _apply_matches
    content = origin.get_content(item_idx)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "~/vllm/vllm/multimodal/processing.py", line 491, in get_content
    content = content(item_idx)
              ^^^^^^^^^^^^^^^^^
  File "~/vllm/vllm/model_executor/models/llava.py", line 367, in get_replacement
    ncols, nrows = encoder_info.get_patch_grid_size(
                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "~/vllm/vllm/model_executor/models/pixtral.py", line 940, in get_patch_grid_size
    patch_width = patch_height = self.get_patch_size()
                                 ^^^^^^^^^^^^^^^^^^^^^
  File "~/vllm/vllm/model_executor/models/pixtral.py", line 923, in get_patch_size
    self.vision_config.spatial_merge_size)
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ray/anaconda3/lib/python3.11/site-packages/transformers/configuration_utils.py", line 210, in __getattribute__
    return super().__getattribute__(key)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AttributeError: 'PixtralVisionConfig' object has no attribute 'spatial_merge_size'

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workingv1

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions