-
-
Notifications
You must be signed in to change notification settings - Fork 10.8k
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
Your output of `python collect_env.py` here
INFO 06-05 16:06:27 [__init__.py:239] Automatically detected platform cuda.
Collecting environment information...
==============================
System Info
==============================
OS : CentOS Linux 7 (Core) (x86_64)
GCC version : (GCC) 8.3.1 20190311 (Red Hat 8.3.1-3)
Clang version : Could not collect
CMake version : version 3.25.0-rc2
Libc version : glibc-2.17
==============================
PyTorch Info
==============================
PyTorch version : 2.6.0+cu124
Is debug build : False
CUDA used to build PyTorch : 12.4
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.10.12 (main, Oct 10 2024, 21:53:07) [GCC 10.2.1 20210130 (Red Hat 10.2.1-11)] (64-bit runtime)
Python platform : Linux-4.18.0-147.mt20200626.413.el8_1.x86_64-x86_64-with-glibc2.17
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.4.99
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
Nvidia driver version : 535.129.03
cuDNN version : Probably one of the following:
/usr/lib64/libcudnn.so.8.9.7
/usr/lib64/libcudnn_adv_infer.so.8.9.7
/usr/lib64/libcudnn_adv_train.so.8.9.7
/usr/lib64/libcudnn_cnn_infer.so.8.9.7
/usr/lib64/libcudnn_cnn_train.so.8.9.7
/usr/lib64/libcudnn_ops_infer.so.8.9.7
/usr/lib64/libcudnn_ops_train.so.8.9.7
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 43 bits physical, 48 bits virtual
CPU(s): 256
On-line CPU(s) list: 0-24
Off-line CPU(s) list: 25-255
Thread(s) per core: 0
Core(s) per socket: 64
Socket(s): 2
NUMA node(s): 2
Vendor ID: AuthenticAMD
CPU family: 25
Model: 1
Model name: AMD EPYC 7713 64-Core Processor
Stepping: 1
Frequency boost: enabled
CPU MHz: 3036.840
CPU max MHz: 2000.0000
CPU min MHz: 1500.0000
BogoMIPS: 3981.31
Virtualization: AMD-V
L1d cache: 2 MiB
L1i cache: 2 MiB
L2 cache: 32 MiB
L3 cache: 256 MiB
NUMA node0 CPU(s): 0-63,128-191
NUMA node1 CPU(s): 64-127,192-255
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate sme ssbd mba sev ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca
==============================
Versions of relevant libraries
==============================
[pip3] mt-tritonclient==1.0.4
[pip3] mypy==1.15.0
[pip3] mypy_extensions==1.1.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-modelopt==0.21.1
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] onnx==1.17.0
[pip3] onnx_graphsurgeon==0.5.8
[pip3] pynvml==12.0.0
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchprofile==0.0.4
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.3
[pip3] triton==3.2.0
[pip3] tritonclient==2.44.0
[conda] numpy 1.19.5 pypi_0 pypi
[conda] pyzmq 25.1.1 pypi_0 pypi
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.8.5.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 SYS SYS SYS SYS SYS SYS PXB PXB N/A
GPU1 NV12 X SYS SYS SYS SYS SYS SYS PXB PXB N/A
NIC0 SYS SYS X PIX SYS SYS SYS SYS SYS SYS
NIC1 SYS SYS PIX X SYS SYS SYS SYS SYS SYS
NIC2 SYS SYS SYS SYS X PIX SYS SYS SYS SYS
NIC3 SYS SYS SYS SYS PIX X SYS SYS SYS SYS
NIC4 SYS SYS SYS SYS SYS SYS X PIX SYS SYS
NIC5 SYS SYS SYS SYS SYS SYS PIX X SYS SYS
NIC6 PXB PXB SYS SYS SYS SYS SYS SYS X PIX
NIC7 PXB PXB SYS SYS SYS SYS SYS SYS PIX X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
==============================
Environment Variables
==============================
LD_LIBRARY_PATH=/lib64:/usr/lib64:/lib64:/usr/lib64:/opt/rh/devtoolset-8/root/usr/lib64:/opt/rh/devtoolset-8/root/usr/lib:/opt/rh/devtoolset-8/root/usr/lib64/dyninst:/opt/rh/devtoolset-8/root/usr/lib/dyninst:/opt/rh/devtoolset-8/root/usr/lib64:/opt/rh/devtoolset-8/root/usr/lib:/opt/triton_model_server/backends/tensorrtllm/libs:/usr/local/cuda/compat/:/opt/triton_model_server/lib:/opt/triton_model_server/lib64:/usr/local/lib/python3.10/site-packages/torch/lib:/usr/local/lib64:/usr/local/lib:/opt/tritonserver/lib:/opt/tritonserver/lib64:/opt/tritonserver/backends/tensorrtllm:/opt/tritonserver/backends/tensorrtllm/libs:/usr/local/openmpi/lib:/usr/local/lib:/usr/local/openssl/lib::/usr/local/TensorRT-10.3.0.26/lib:/usr/local/TensorRT-10.7.0.23/lib:/usr/local/java/bin:/home/sankuai/conda/envs/codelab/bin:/home/sankuai/conda/condabin:/usr/local/jdk1.8.0_45/bin:/opt/meituan/spark-2.2/sbin:/opt/meituan/spark-2.2/bin:/opt/meituan/hadoop/sbin:/opt/rh/devtoolset-8/root/usr/bin:/opt/tritonserver/perf_tools:/opt/triton_model_server/bin:/opt/tritonserver/bin:/usr/local/openmpi/include:/usr/local/openmpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/java/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/opt/tritonserver/perf_tools:/opt/triton_model_server/bin:/opt/tritonserver/bin:/usr/local/openmpi/include:/usr/local/openmpi/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/opt/meituan/hadoop/bin:/usr/local/java/bin:/opt/rh/devtoolset-8/root/usr/lib64:/opt/rh/devtoolset-8/root/usr/lib:/opt/rh/devtoolset-8/root/usr/lib64/dyninst:/opt/rh/devtoolset-8/root/usr/lib/dyninst:/opt/rh/devtoolset-8/root/usr/lib64:/opt/rh/devtoolset-8/root/usr/lib:/opt/triton_model_server/backends/tensorrtllm/libs:/usr/local/cuda/compat/:/opt/triton_model_server/lib:/opt/triton_model_server/lib64:/usr/local/lib/python3.10/site-packages/torch/lib:/usr/local/lib64:/usr/local/lib:/opt/tritonserver/lib:/opt/tritonserver/lib64:/opt/tritonserver/backends/tensorrtllm:/opt/tritonserver/backends/tensorrtllm/libs:/usr/local/openmpi/lib:/usr/local/lib:/usr/local/openssl/lib::/usr/local/TensorRT-10.3.0.26/lib:/usr/local/TensorRT-10.7.0.23/lib:/usr/local/java/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/lib64:/usr/lib64:$LD_LIBRARY_PATH:/opt/triton_model_server/backends/tensorrtllm/libs:/usr/local/cuda/compat/:/opt/triton_model_server/lib:/opt/triton_model_server/lib64:/usr/local/lib/python3.10/site-packages/torch/lib:/usr/local/lib64:/usr/local/lib:/opt/tritonserver/lib:/opt/tritonserver/lib64:/opt/tritonserver/backends/tensorrtllm:/opt/tritonserver/backends/tensorrtllm/libs:/usr/local/openmpi/lib:/usr/local/lib:/usr/local/openssl/lib::/usr/local/TensorRT-10.3.0.26/lib:/usr/local/TensorRT-10.7.0.23/lib:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/java/jre/lib/amd64/server:/opt/meituan/hadoop/lib/native:/opt/triton_model_server/backends/tensorrtllm/libs:/usr/local/cuda/compat/:/opt/triton_model_server/lib:/opt/triton_model_server/lib64:/usr/local/lib/python3.10/site-packages/torch/lib:/usr/local/lib64:/usr/local/lib:/opt/tritonserver/lib:/opt/tritonserver/lib64:/opt/tritonserver/backends/tensorrtllm:/opt/tritonserver/backends/tensorrtllm/libs:/usr/local/openmpi/lib:/usr/local/lib:/usr/local/openssl/lib::/usr/local/TensorRT-10.3.0.26/lib:/usr/local/TensorRT-10.7.0.23/lib:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/java/jre/lib/amd64/server:/opt/meituan/hadoop/lib/native
NVIDIA_VISIBLE_DEVICES=GPU-7a1844eb-8b2b-2d4c-41ba-2e4bd62cb4ba,GPU-9b74314e-cb73-75a4-64b0-659c9b7afa2c
NCCL_IB_GID_INDEX=7
NVIDIA_DRIVER_CAPABILITIES=compute,utility
OMP_NUM_THREADS=25
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
When running benchmark_serving.py, I got some strange metrics:
- I got an expected ttft and an abnormally large tpot for the first inference after the vllm serve started.
The script I used for server side is:The script I used for client side is:VLLM_TORCH_PROFILER_DIR=./outputs/vllm_profile VLLM_RPC_TIMEOUT=1800000 \ vllm serve ../../data/huggingface.co/Qwen/Qwen3-32B \ --max-model-len=16384 \ --max-num-batch-tokens=2048 \ --max-num-seqs=128 \ -tp 2 \ --disable-log-requestsAnd the output I got:python3 benchmarks/benchmark_serving.py --port 8000 \ --save-result --save-detailed \ --result-dir outputs/benchmark \ --backend vllm \ --model ../data/huggingface.co/Qwen/Qwen3-32B \ --dataset-name custom \ --dataset-path "dataset/custom_all.jsonl" \ --custom-output-len 10 \ --num-prompts 16 \ --max-concurrency 2 \ --temperature 0.6 \ --top-p 0.95 \ --top-k 1 \ --profile=========== Serving Benchmark Result =========== Successful requests: 16 Benchmark duration (s): 19.65 Total input tokens: 109554 Total generated tokens: 160 Request throughput (req/s): 0.81 Output token throughput (tok/s): 8.14 Total Token throughput (tok/s): 5583.69 ---------------Time to First Token--------------- Mean TFTT (ms): 1395.23 Median TFTT (ms): 1535.06 P99 TFTT (ms): 2659.78 -----Time per Output Token (excl. 1st token)----- Mean TPOT (ms): 116.35 Median TPOT (ms): 104.55 P99 TPOT (ms): 208.98 ---------------Inter-token Latency--------------- Mean ITL (ms): 116.35 Median ITL (ms): 27.72 P99 ITL (ms): 379.71 ================================================ - I got an abnormally small ttft and an expected tpot for the following inferences, and I noticed the prefix cache hit rate is always bigger than 50%, while in the first inference it's about 10%
The output I got:=========== Serving Benchmark Result =========== Successful requests: 16 Benchmark duration (s): 2.72 Total input tokens: 109554 Total generated tokens: 160 Request throughput (req/s): 5.88 Output token throughput (tok/s): 58.81 Total Token throughput (tok/s): 40324.99 ---------------Time to First Token--------------- Mean TFTT (ms): 28.29 Median TFTT (ms): 28.63 P99 TFTT (ms): 30.06 -----Time per Output Token (excl. 1st token)----- Mean TPOT (ms): 116.35 Median TPOT (ms): 104.55 P99 TPOT (ms): 208.98 ---------------Inter-token Latency--------------- Mean ITL (ms): 28.49 Median ITL (ms): 27.48 P99 ITL (ms): 46.02 ================================================ - When I set
--max-concurrencyto 4 and higher, I found similar phenomena
I reviewed the detailed output json file and found that when tpot is abnormally large, most of the tpot are still as large as expected, only very few tpot are as large as ttft.
Some other issues also mentioned similar phenomenon, like [Bug]: vllm 0.8.3 abnormal TTFT (too long) in the first serving #16858, but they were not resolved well.
Any advice would be helpful! Looking forward for your response!
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working