-
-
Couldn't load subscription status.
- Fork 10.8k
Open
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity
Description
Your current environment
The output of python collect_env.py
Collecting environment information...
==============================
System Info
==============================
OS : Ubuntu 20.04.6 LTS (x86_64)
GCC version : (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version : Could not collect
CMake version : version 3.26.0
Libc version : glibc-2.31
==============================
PyTorch Info
==============================
PyTorch version : 2.7.0+cu126
Is debug build : False
CUDA used to build PyTorch : 12.6
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.11 | packaged by Anaconda, Inc. | (main, Jun 5 2025, 13:09:17) [GCC 11.2.0] (64-bit runtime)
Python platform : Linux-5.15.0-1074-azure-x86_64-with-glibc2.31
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 11.7.99
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA A100-SXM4-40GB
GPU 1: NVIDIA A100-SXM4-40GB
GPU 2: NVIDIA A100-SXM4-40GB
GPU 3: NVIDIA A100-SXM4-40GB
GPU 4: NVIDIA A100-SXM4-40GB
GPU 5: NVIDIA A100-SXM4-40GB
GPU 6: NVIDIA A100-SXM4-40GB
GPU 7: NVIDIA A100-SXM4-40GB
Nvidia driver version : 560.35.03
cuDNN version : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.5.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.5.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.5.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.5.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.5.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.5.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.5.0
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 1
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 4
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7V12 64-Core Processor
Stepping: 0
CPU MHz: 2445.441
BogoMIPS: 4890.88
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 3 MiB
L1i cache: 3 MiB
L2 cache: 48 MiB
L3 cache: 384 MiB
NUMA node0 CPU(s): 0-23
NUMA node1 CPU(s): 24-47
NUMA node2 CPU(s): 48-71
NUMA node3 CPU(s): 72-95
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled
Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvshmem-cu12==3.3.9
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pynvml==12.0.0
[pip3] pyzmq==27.0.0
[pip3] torch==2.7.0+cu126
[pip3] torchaudio==2.7.0+cu126
[pip3] torchvision==0.22.0+cu126
[pip3] transformers==4.53.1
[pip3] triton==3.3.0
[conda] numpy 2.2.6 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi
[conda] nvidia-cufile-cu12 1.11.1.6 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi
[conda] nvidia-ml-py 12.575.51 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi
[conda] nvidia-nvshmem-cu12 3.3.9 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi
[conda] pynvml 12.0.0 pypi_0 pypi
[conda] pyzmq 27.0.0 pypi_0 pypi
[conda] torch 2.7.0+cu126 pypi_0 pypi
[conda] torchaudio 2.7.0+cu126 pypi_0 pypi
[conda] torchvision 0.22.0+cu126 pypi_0 pypi
[conda] transformers 4.53.1 pypi_0 pypi
[conda] triton 3.3.0 pypi_0 pypi
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : N/A (dev)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
�[4mGPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 CPU Affinity NUMA Affinity GPU NUMA ID�[0m
GPU0 X NODE SYS SYS SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS 24-47 1 N/A
GPU1 NODE X SYS SYS SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS 24-47 1 N/A
GPU2 SYS SYS X NODE SYS SYS SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS 0-23 0 N/A
GPU3 SYS SYS NODE X SYS SYS SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS 0-23 0 N/A
GPU4 SYS SYS SYS SYS X NODE SYS SYS SYS SYS SYS SYS NODE NODE SYS SYS 72-95 3 N/A
GPU5 SYS SYS SYS SYS NODE X SYS SYS SYS SYS SYS SYS NODE NODE SYS SYS 72-95 3 N/A
GPU6 SYS SYS SYS SYS SYS SYS X NODE SYS SYS SYS SYS SYS SYS NODE NODE 48-71 2 N/A
GPU7 SYS SYS SYS SYS SYS SYS NODE X SYS SYS SYS SYS SYS SYS NODE NODE 48-71 2 N/A
NIC0 NODE NODE SYS SYS SYS SYS SYS SYS X NODE SYS SYS SYS SYS SYS SYS
NIC1 NODE NODE SYS SYS SYS SYS SYS SYS NODE X SYS SYS SYS SYS SYS SYS
NIC2 SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS X NODE SYS SYS SYS SYS
NIC3 SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS NODE X SYS SYS SYS SYS
NIC4 SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS X NODE SYS SYS
NIC5 SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS NODE X SYS SYS
NIC6 SYS SYS SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS X NODE
NIC7 SYS SYS SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_ib0
NIC1: mlx5_ib1
NIC2: mlx5_ib2
NIC3: mlx5_ib3
NIC4: mlx5_ib4
NIC5: mlx5_ib5
NIC6: mlx5_ib6
NIC7: mlx5_ib7
==============================
Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=11.7 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511
NCCL_IB_PCI_RELAXED_ORDERING=1
VLLM_ALLOW_LONG_MAX_MODEL_LEN=1
NCCL_VERSION=2.13.4-1
NCCL_SOCKET_IFNAME=eth0
NCCL_DEBUG_SUBSYS=GRAPH,INIT,ENV
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NCCL_DEBUG=INFO
NVIDIA_PRODUCT_NAME=CUDA
PYTORCH_TYPE=stable
NVIDIA_CUDA_END_OF_LIFE=1
CUDA_DEVICE_ORDER=PCI_BUS_ID
CUDA_VERSION=11.7.0
NCCL_IB_TIMEOUT=22
LD_LIBRARY_PATH=/opt/nccl-rdma-sharp-plugins/lib:/opt/hpcx/ompi/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NCCL_IB_DISABLE=0
OMP_NUM_THREADS=92
PYTORCH_BUILD_VERSION=1.13.1
VLLM_USE_V1=1
NCCL_TOPO_FILE=/opt/microsoft/ndv4-topo.xml
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
vllm serve meta-llama/Llama-3.1-70B -tp 8 --chat-template ./template.jinja --fully-sharded-loras --no-enable-prefix-caching --enable-lora --max-lora-rank 8 --lora-modules meta-llama/Llama-3.1-70B-lora-8-0=/tmp/adapters/meta-llama/Llama-3.1-70B/lora-8-0Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
cjackal
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity