Skip to content

[Bug]: Performance Regression in Acceptance length for EAGLE3 #26191

@tomasruizt

Description

@tomasruizt

Your current environment

The output of python collect_env.py
Collecting environment information...
==============================
        System Info
==============================
OS                           : Ubuntu 22.04.4 LTS (x86_64)
GCC version                  : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version                : Could not collect
CMake version                : version 3.26.4
Libc version                 : glibc-2.35

==============================
       PyTorch Info
==============================
PyTorch version              : 2.8.0+cu128
Is debug build               : False
CUDA used to build PyTorch   : 12.8
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.11.9 (main, Apr 19 2024, 16:48:06) [GCC 11.2.0] (64-bit runtime)
Python platform              : Linux-5.15.0-153-generic-x86_64-with-glibc2.35

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.4.131
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : GPU 0: NVIDIA H100
Nvidia driver version        : 535.261.03
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                            x86_64
CPU op-mode(s):                          32-bit, 64-bit
Address sizes:                           52 bits physical, 57 bits virtual
Byte Order:                              Little Endian
CPU(s):                                  96
On-line CPU(s) list:                     0-95
Vendor ID:                               AuthenticAMD
Model name:                              AMD EPYC 9254 24-Core Processor
CPU family:                              25
Model:                                   17
Thread(s) per core:                      2
Core(s) per socket:                      24
Socket(s):                               2
Stepping:                                1
Frequency boost:                         enabled
CPU max MHz:                             2900.0000
CPU min MHz:                             1500.0000
BogoMIPS:                                5800.48
Flags:                                   fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d
Virtualization:                          AMD-V
L1d cache:                               1.5 MiB (48 instances)
L1i cache:                               1.5 MiB (48 instances)
L2 cache:                                48 MiB (48 instances)
L3 cache:                                256 MiB (8 instances)
NUMA node(s):                            2
NUMA node0 CPU(s):                       0-23,48-71
NUMA node1 CPU(s):                       24-47,72-95
Vulnerability Gather data sampling:      Not affected
Vulnerability Indirect target selection: Not affected
Vulnerability Itlb multihit:             Not affected
Vulnerability L1tf:                      Not affected
Vulnerability Mds:                       Not affected
Vulnerability Meltdown:                  Not affected
Vulnerability Mmio stale data:           Not affected
Vulnerability Reg file data sampling:    Not affected
Vulnerability Retbleed:                  Not affected
Vulnerability Spec rstack overflow:      Mitigation; safe RET
Vulnerability Spec store bypass:         Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:                Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:                Mitigation; Enhanced / Automatic IBRS; IBPB disabled; STIBP disabled; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                     Not affected
Vulnerability Tsx async abort:           Not affected

==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.2.8
[pip3] galore-torch==1.0
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.13.0
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvshmem-cu12==3.3.9
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pynvml==12.0.0
[pip3] pytorch-triton==3.4.0+git11ec6354
[pip3] pyzmq==26.4.0
[pip3] torch==2.8.0
[pip3] torchaudio==2.8.0
[pip3] torchvision==0.23.0
[pip3] transformers==4.56.1
[pip3] triton==3.4.0+git663e04e8
[pip3] triton_kernels==1.0.0
[pip3] vector-quantize-pytorch==1.22.2
[conda] blas                      1.0                         mkl  
[conda] cuda-cudart               12.4.127                      0    nvidia
[conda] cuda-cupti                12.4.127                      0    nvidia
[conda] cuda-libraries            12.4.0                        0    nvidia
[conda] cuda-nvrtc                12.4.127                      0    nvidia
[conda] cuda-nvtx                 12.4.127                      0    nvidia
[conda] cuda-opencl               12.5.39                       0    nvidia
[conda] cuda-runtime              12.4.0                        0    nvidia
[conda] cuda-version              12.5                          3    nvidia
[conda] ffmpeg                    4.3                  hf484d3e_0    pytorch
[conda] libcublas                 12.4.2.65                     0    nvidia
[conda] libcufft                  11.2.0.44                     0    nvidia
[conda] libcufile                 1.10.1.7                      0    nvidia
[conda] libcurand                 10.3.6.82                     0    nvidia
[conda] libcusolver               11.6.0.99                     0    nvidia
[conda] libcusparse               12.3.0.142                    0    nvidia
[conda] libjpeg-turbo             2.0.0                h9bf148f_0    pytorch
[conda] libnpp                    12.2.5.2                      0    nvidia
[conda] libnvfatbin               12.5.82                       0    nvidia
[conda] libnvjitlink              12.4.99                       0    nvidia
[conda] libnvjpeg                 12.3.1.89                     0    nvidia
[conda] mkl                       2023.1.0         h213fc3f_46344  
[conda] mkl-service               2.4.0           py311h5eee18b_1  
[conda] mkl_fft                   1.3.8           py311h5eee18b_0  
[conda] mkl_random                1.2.4           py311hdb19cb5_0  
[conda] numpy                     1.26.4          py311h08b1b3b_0  
[conda] numpy-base                1.26.4          py311hf175353_0  
[conda] optree                    0.12.1                   pypi_0    pypi
[conda] pytorch                   2.4.0           py3.11_cuda12.4_cudnn9.1.0_0    pytorch
[conda] pytorch-cuda              12.4                 hc786d27_6    pytorch
[conda] pytorch-mutex             1.0                        cuda    pytorch
[conda] torchaudio                2.4.0               py311_cu124    pytorch
[conda] torchelastic              0.2.2                    pypi_0    pypi
[conda] torchtriton               3.0.0                     py311    pytorch
[conda] torchvision               0.19.0              py311_cu124    pytorch
[conda] transformers              4.47.0                   pypi_0    pypi

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
vLLM Version                 : 0.1.dev9651+gdaee8ec1e (git sha: daee8ec1e)
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
        GPU0    NIC0    NIC1    NIC2    NIC3    NIC4    NIC5    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      SYS     SYS     SYS     SYS     PXB     NODE    26-35,74-83     1               N/A
NIC0    SYS      X      PIX     NODE    NODE    SYS     SYS
NIC1    SYS     PIX      X      NODE    NODE    SYS     SYS
NIC2    SYS     NODE    NODE     X      NODE    SYS     SYS
NIC3    SYS     NODE    NODE    NODE     X      SYS     SYS
NIC4    PXB     SYS     SYS     SYS     SYS      X      NODE
NIC5    NODE    SYS     SYS     SYS     SYS     NODE     X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4
  NIC5: mlx5_5

==============================
     Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.4 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 brand=tesla,driver>=535,driver<536 brand=unknown,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=geforce,driver>=535,driver<536 brand=geforcertx,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=titan,driver>=535,driver<536 brand=titanrtx,driver>=535,driver<536
NCCL_VERSION=2.20.5-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
VLLM_WORKER_MULTIPROC_METHOD=spawn
NVIDIA_PRODUCT_NAME=CUDA
CUDA_VERSION=12.4.0
PYTORCH_VERSION=2.4.0
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
VLLM_USE_V1=1
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

The acceptance length of EAGLE3 on main is lower than it used to be.

python examples/offline_inference/spec_decode.py \
        --model-dir meta-llama/Llama-3.1-8B-Instruct \
        --eagle-dir yuhuili/EAGLE3-LLaMA3.1-Instruct-8B \
        --method eagle3 \
        --num_spec_tokens 7 \
        --dataset-name hf \
        --dataset-path philschmid/mt-bench \
        --num_prompts 80 \
        --temp 0.0

According to previous measurements, like #17504 (comment), confirmed here: #24322

Previous AL=3.53

total_num_output_tokens: 16990
num_drafts: 4816
num_draft_tokens: 33712
num_accepted_tokens: 12208
mean acceptance length: 3.53
--------------------------------------------------
acceptance at token 0: 0.74
acceptance at token 1: 0.54
acceptance at token 2: 0.41
acceptance at token 3: 0.31
acceptance at token 4: 0.23
acceptance at token 5: 0.17
acceptance at token 6: 0.13

Current AL=3.40

--------------------------------------------------
total_num_output_tokens: 17028
num_drafts: 5010
num_draft_tokens: 35070
num_accepted_tokens: 12067
mean acceptance length: 3.41
--------------------------------------------------
acceptance at token 0: 0.74
acceptance at token 1: 0.53
acceptance at token 2: 0.38
acceptance at token 3: 0.28
acceptance at token 4: 0.21
acceptance at token 5: 0.15
acceptance at token 6: 0.12

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions