Skip to content

[Bug]: Speculative Decoding Issue with VLLM_ENABLE_V1_MULTIPROCESSING=0 #27287

@shadowpa0327

Description

@shadowpa0327

Your current environment

The output of python collect_env.py
Collecting environment information...
uv is set
==============================
        System Info
==============================
OS                           : Ubuntu 24.04.2 LTS (x86_64)
GCC version                  : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version                : Could not collect
CMake version                : version 3.28.3
Libc version                 : glibc-2.39

==============================
       PyTorch Info
==============================
PyTorch version              : 2.8.0+cu128
Is debug build               : False
CUDA used to build PyTorch   : 12.8
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.3 (main, Jun 18 2025, 17:59:45) [GCC 13.3.0] (64-bit runtime)
Python platform              : Linux-6.11.0-29-generic-x86_64-with-glibc2.39

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.8.93
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : GPU 0: NVIDIA H100 80GB HBM3
Nvidia driver version        : 570.158.01
cuDNN version                : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.10.2
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        52 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               26
On-line CPU(s) list:                  0-25
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Xeon(R) Platinum 8480+
CPU family:                           6
Model:                                143
Thread(s) per core:                   2
Core(s) per socket:                   13
Socket(s):                            1
Stepping:                             8
BogoMIPS:                             4000.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 wbnoinvd arat vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b fsrm md_clear serialize tsxldtrk avx512_fp16 arch_capabilities
Virtualization:                       VT-x
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            832 KiB (26 instances)
L1i cache:                            832 KiB (26 instances)
L2 cache:                             52 MiB (13 instances)
L3 cache:                             16 MiB (1 instance)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-25
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Unknown: No mitigations
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Mitigation; TSX disabled

==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.3.1
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.15.0
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-ml-py==13.580.82
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pynvml==13.0.1
[pip3] pyzmq==27.1.0
[pip3] torch==2.8.0
[pip3] torchaudio==2.8.0
[pip3] torchvision==0.23.0
[pip3] transformers==4.56.1
[pip3] triton==3.4.0
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
vLLM Version                 : 0.11.1.dev18+g650bf20f6 (git sha: 650bf20f6)
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
  	�[4mGPU0	NIC0	CPU Affinity	NUMA Affinity	GPU NUMA ID�[0m
GPU0	 X 	PHB	0-25	0		N/A
NIC0	PHB	 X 				

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0

==============================
     Environment Variables
==============================
LD_LIBRARY_PATH=/usr/mpi/gcc/openmpi-4.1.7rc1/lib:/usr/mpi/gcc/openmpi-4.1.7rc1/lib64
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY


🐛 Describe the bug

Description of the Issue

The speculative decoding doesn't seem to work properly when setting VLLM_ENABLE_V1_MULTIPROCESSING=0

  • Example commands with multi_proc disabled (spec doesn't work)
VLLM_ENABLE_V1_MULTIPROCESSING=0 python examples/offline_inference/spec_decode.py --method ngram

Output ==>

-------------------------------------------------
total_num_output_tokens: 247573
num_drafts: 0
num_draft_tokens: 0
num_accepted_tokens: 0
mean acceptance length: 1.00
--------------------------------------------------
acceptance at token 0: 0.00
acceptance at token 1: 0.00
  • Example commands with multi_proc enabled (default) (spec work properly)
python examples/offline_inference/spec_decode.py --method ngram

Output ==>

--------------------------------------------------                                                                                                                                                                           
total_num_output_tokens: 248291                                                                                                                                                                                              
num_drafts: 74097                                                                                                                                                                                                            
num_draft_tokens: 147899                                                                                                                                                                                                     
num_accepted_tokens: 141162                                                                                                                                                                                                  
mean acceptance length: 2.91                                                                                                                                                                                                 
--------------------------------------------------                                                                                                                                                                           
acceptance at token 0: 0.96                                                                                                                                                                                                  
acceptance at token 1: 0.94    

Possible Reason

It appears that the post_step() function in EngineCore, which updates the draft_token_token_ids and returns them to the scheduler, is never invoked, resulting in proposed spec_tokens failing to be scheduled.

Potential Fix

diff --git a/vllm/v1/engine/core_client.py b/vllm/v1/engine/core_client.py
index a84b0e551..757c141fd 100644
--- a/vllm/v1/engine/core_client.py
+++ b/vllm/v1/engine/core_client.py
@@ -245,7 +245,8 @@ class InprocClient(EngineCoreClient):
         self.engine_core = EngineCore(*args, **kwargs)
 
     def get_output(self) -> EngineCoreOutputs:
-        outputs, _ = self.engine_core.step_fn()
+        outputs, model_executed = self.engine_core.step_fn()
+        self.engine_core.post_step(model_executed)
         return outputs and outputs.get(0) or EngineCoreOutputs()

Reference

#23041

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions