Skip to content

[Bug]: BitsandBytes quantization is not working as expected #5569

@QwertyJack

Description

@QwertyJack

Your current environment

$ python collect_env.py
Collecting environment information...
PyTorch version: 2.3.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.5
Libc version: glibc-2.35

Python version: 3.11.9 (main, Apr 19 2024, 16:48:06) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-105-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: Tesla T4
Nvidia driver version: 550.54.15
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.5
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      46 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             72
On-line CPU(s) list:                0-71
Vendor ID:                          GenuineIntel
Model name:                         Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz
CPU family:                         6
Model:                              85
Thread(s) per core:                 2
Core(s) per socket:                 18
Socket(s):                          2
Stepping:                           4
BogoMIPS:                           6000.00
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke md_clear flush_l1d arch_capabilities
Virtualization:                     VT-x
L1d cache:                          1.1 MiB (36 instances)
L1i cache:                          1.1 MiB (36 instances)
L2 cache:                           36 MiB (36 instances)
L3 cache:                           49.5 MiB (2 instances)
NUMA node(s):                       2
NUMA node0 CPU(s):                  0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70
NUMA node1 CPU(s):                  1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit:        KVM: Mitigation: VMX disabled
Vulnerability L1tf:                 Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable
Vulnerability Mds:                  Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Meltdown:             Mitigation; PTI
Vulnerability Mmio stale data:      Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed:             Mitigation; IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; IBRS, IBPB conditional, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Mitigation; Clear CPU buffers; SMT vulnerable

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] torch==2.3.0
[pip3] transformers==4.41.2
[pip3] triton==2.3.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] torch                     2.3.0                    pypi_0    pypi
[conda] transformers              4.41.2                   pypi_0    pypi
[conda] triton                    2.3.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.0.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      1,3,5,7,9,11    1               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

🐛 Describe the bug

With the latest bitsandbytes quantization feature, the official Llama3-8B-Instruct produces garbage.

Start the server:

$ python -m vllm.entrypoints.openai.api_server --dtype half --served-model-name llama3-8b --model /models/Meta-Llama-3-8B-Instruct --load-format bitsandbytes --quantization bitsandbytes
INFO 06-15 14:33:24 api_server.py:177] vLLM API server version 0.5.0.post1
INFO 06-15 14:33:24 api_server.py:178] args: Namespace(host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, chat_template=None, response_role='assistant',
ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], model='/models/Meta-Llama-3-8B-Instruct', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust
_remote_code=False, download_dir=None, load_format='bitsandbytes', dtype='half', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=None, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tens
or_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=4, gpu_memory_utilization=0.9, num_gpu_blocks_ov
erride=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization='bitsandbytes', rope_scaling=None, rope_theta=None, enforce_eager=False, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=F
alse, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, enable_lora=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, device='auto
', image_input_type=None, image_token_id=None, image_input_shape=None, image_feature_size=None, image_processor=None, image_processor_revision=None, disable_image_processor=False, scheduler_delay_factor=0.0, enable_chunked_prefill=False, speculative_model=None, num_speculative
_tokens=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, model_loader_extra_config=None, preemption_mode=None, served_model_name=['llama3-8b'], qlora_adapter_name_or_path=None, engine_use_
ray=False, disable_log_requests=False, max_log_len=None)
WARNING 06-15 14:33:24 config.py:1222] Casting torch.bfloat16 to torch.float16.
WARNING 06-15 14:33:24 config.py:217] bitsandbytes quantization is not fully optimized yet. The speed can be slower than non-quantized models.
INFO 06-15 14:33:24 llm_engine.py:161] Initializing an LLM engine (v0.5.0.post1) with config: model='/models/Meta-Llama-3-8B-Instruct', speculative_config=None, tokenizer='/models/Meta-Llama-3-8B-Instruct', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_sc
aling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=8192, download_dir=None, load_format=LoadFormat.BITSANDBYTES, tensor_parallel_size=1, disable_custom_all_reduce=False, quantization=bitsandbytes, enforce_eager=False
, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), seed=0, served_model_name=llama3-8b)
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
INFO 06-15 14:33:25 selector.py:131] Cannot use FlashAttention-2 backend for Volta and Turing GPUs.
INFO 06-15 14:33:25 selector.py:51] Using XFormers backend.
INFO 06-15 14:33:26 selector.py:131] Cannot use FlashAttention-2 backend for Volta and Turing GPUs.
INFO 06-15 14:33:26 selector.py:51] Using XFormers backend.
INFO 06-15 14:33:26 loader.py:744] Loading weights with BitsAndBytes quantization.  May take a while ...
INFO 06-15 14:33:32 model_runner.py:160] Loading model weights took 5.3128 GB
INFO 06-15 14:34:17 gpu_executor.py:83] # GPU blocks: 2595, # CPU blocks: 2048
INFO 06-15 14:34:19 model_runner.py:889] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.
INFO 06-15 14:34:19 model_runner.py:893] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.
INFO 06-15 14:35:47 model_runner.py:965] Graph capturing finished in 88 secs.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
INFO 06-15 14:35:48 serving_chat.py:92] Using default chat template:
INFO 06-15 14:35:48 serving_chat.py:92] {% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>
INFO 06-15 14:35:48 serving_chat.py:92]
INFO 06-15 14:35:48 serving_chat.py:92] '+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>
INFO 06-15 14:35:48 serving_chat.py:92]
INFO 06-15 14:35:48 serving_chat.py:92] ' }}{% endif %}
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
WARNING 06-15 14:35:48 serving_embedding.py:141] embedding_mode is False. Embedding API will not work.
INFO:     Started server process [2622103]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

Test the service:

$ curl localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{"model": "llama3-8b", "messages": [{"role": "user", "content": "Hi!"}], "max_tokens": 128}'
{"id":"cmpl-5a7d1b331b8345f88433fbaf0da9c7e2","object":"chat.completion","created":1718460912,"model":"llama3-8b","choices":[{"index":0,"message":{"role":"assistant","content":" the!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!","tool_calls":[]},"logprobs":null,"finish_reason":"length","stop_reason":null}],"usage":{"prompt_tokens":12,"total_tokens":140,"completion_tokens":128}}

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions