-
-
Notifications
You must be signed in to change notification settings - Fork 10.6k
Closed
Labels
Description
Anything you want to discuss about vllm.
I was wondering why does this happen? I am new to this space and was playing around with different machines, models and frameworks.
I am able to inference single image (on RTX3070) in around 70s using huggingface transformer. Tried similar thing using vllm (current main branch), it got out of memory which got me curious.
from transformers import AutoModelForCausalLM, AutoProcessor
from PIL import Image
import torch
model_id = "microsoft/Phi-3-vision-128k-instruct"
device = "cuda:0"
model = AutoModelForCausalLM.from_pretrained(model_id, cache_dir="/content/my_models/phi_3_vision",
device_map="cuda",
trust_remote_code=True,
torch_dtype="auto",
_attn_implementation="eager")
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
def process_image(image_path):
"""Processes a single image and returns the model's response."""
messages = [
{
"role": "user",
"content": "<|image_1|>\nWhat is the destination address?",
}
]
prompt = processor.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image = Image.open(image_path)
inputs = processor(prompt, [image], return_tensors="pt").to("cuda:0")
generation_args = {
"max_new_tokens": 500,
"temperature": 0.0,
"do_sample": False,
}
generate_ids = model.generate(
**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args
)
generate_ids = generate_ids[:, inputs["input_ids"].shape[1] :]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return response
Vllm
import os
import subprocess
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
from PIL import Image
from vllm import LLM, SamplingParams
from vllm.multimodal.image import ImagePixelData
def run_phi3v():
model_path = "microsoft/Phi-3-vision-128k-instruct"
llm = LLM(
model=model_path,
trust_remote_code=True,
image_input_type="pixel_values",
image_token_id=32044,
image_input_shape="1,3,1008,1344",
image_feature_size=1921,
disable_image_processor=False,
gpu_memory_utilization=0.7,
)
image = Image.open("images/iamge2.png")
# single-image prompt
prompt = "<|user|>\n<|image_1|>\nWhat is the destination address?<|end|>\n<|assistant|>\n" # noqa: E501
prompt = prompt.replace("<|image_1|>", "<|image|>" * 1921 + "<s>")
sampling_params = SamplingParams(temperature=0, max_tokens=64)
outputs = llm.generate(
{
"prompt": prompt,
"multi_modal_data": ImagePixelData(image),
},
sampling_params=sampling_params)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
if __name__ == "__main__":
local_directory = "images"
# Make sure the local directory exists or create it
os.makedirs(local_directory, exist_ok=True)
run_phi3v()