Skip to content

[Misc]: Curious why this is happening: Running phi-3-vision on a RTX 3070 (8GB VRAM) works with transformer but not with vllm (goes out of memory) #5883

@chandeldivyam

Description

@chandeldivyam

Anything you want to discuss about vllm.

I was wondering why does this happen? I am new to this space and was playing around with different machines, models and frameworks.

I am able to inference single image (on RTX3070) in around 70s using huggingface transformer. Tried similar thing using vllm (current main branch), it got out of memory which got me curious.

from transformers import AutoModelForCausalLM, AutoProcessor
from PIL import Image
import torch

model_id = "microsoft/Phi-3-vision-128k-instruct"
device = "cuda:0"

model = AutoModelForCausalLM.from_pretrained(model_id, cache_dir="/content/my_models/phi_3_vision",
                                             device_map="cuda",
                                             trust_remote_code=True,
                                             torch_dtype="auto",
                                             _attn_implementation="eager")

processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

def process_image(image_path):
    """Processes a single image and returns the model's response."""
    messages = [
        {
            "role": "user",
            "content": "<|image_1|>\nWhat is the destination address?",
        }
    ]

    prompt = processor.tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image = Image.open(image_path)

    inputs = processor(prompt, [image], return_tensors="pt").to("cuda:0")

    generation_args = {
        "max_new_tokens": 500,
        "temperature": 0.0,
        "do_sample": False,
    }

    generate_ids = model.generate(
        **inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args
    )

    generate_ids = generate_ids[:, inputs["input_ids"].shape[1] :]
    response = processor.batch_decode(
        generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )[0]
    return response

Vllm

import os
import subprocess

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

from PIL import Image

from vllm import LLM, SamplingParams
from vllm.multimodal.image import ImagePixelData


def run_phi3v():
    model_path = "microsoft/Phi-3-vision-128k-instruct"
    llm = LLM(
        model=model_path,
        trust_remote_code=True,
        image_input_type="pixel_values",
        image_token_id=32044,
        image_input_shape="1,3,1008,1344",
        image_feature_size=1921,
        disable_image_processor=False,
	gpu_memory_utilization=0.7,
    )

    image = Image.open("images/iamge2.png")

    # single-image prompt
    prompt = "<|user|>\n<|image_1|>\nWhat is the destination address?<|end|>\n<|assistant|>\n"  # noqa: E501
    prompt = prompt.replace("<|image_1|>", "<|image|>" * 1921 + "<s>")

    sampling_params = SamplingParams(temperature=0, max_tokens=64)

    outputs = llm.generate(
        {
            "prompt": prompt,
            "multi_modal_data": ImagePixelData(image),
        },
        sampling_params=sampling_params)
    for o in outputs:
        generated_text = o.outputs[0].text
        print(generated_text)


if __name__ == "__main__":
    local_directory = "images"

    # Make sure the local directory exists or create it
    os.makedirs(local_directory, exist_ok=True)

    run_phi3v()

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions