-
-
Notifications
You must be signed in to change notification settings - Fork 10.8k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
Collecting environment information...
PyTorch version: 2.3.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.1
Libc version: glibc-2.35
Python version: 3.10.12 (main, Mar 22 2024, 16:50:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.5.0-1022-aws-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA L4
GPU 1: NVIDIA L4
GPU 2: NVIDIA L4
GPU 3: NVIDIA L4
Nvidia driver version: 535.183.01
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7R13 Processor
CPU family: 25
Model: 1
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 1
Stepping: 1
BogoMIPS: 5300.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 768 KiB (24 instances)
L1i cache: 768 KiB (24 instances)
L2 cache: 12 MiB (24 instances)
L3 cache: 96 MiB (3 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-47
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flashinfer==0.0.9+cu121torch2.3
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] onnx==1.16.1
[pip3] onnxruntime-gpu==1.18.0
[pip3] sentence-transformers==3.0.1
[pip3] torch==2.3.1+cu121
[pip3] torchvision==0.18.1+cu121
[pip3] transformers==4.43.2
[pip3] triton==2.3.1
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.3.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X SYS SYS SYS 0-47 0 N/A
GPU1 SYS X SYS SYS 0-47 0 N/A
GPU2 SYS SYS X SYS 0-47 0 N/A
GPU3 SYS SYS SYS X 0-47 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
🐛 Describe the bug
Model: google/paligemma-3b-mix-448
Issue: There is an issue during the warmup phase when using tensor parallelism.
Reproducible example:
from vllm import LLM
llm = LLM(model="google/paligemma-3b-mix-448", tensor_parallel_size=2)Exception:
INFO 07-29 19:25:16 model_runner.py:692] Loading model weights took 3.2067 GB
(VllmWorkerProcess pid=161) INFO 07-29 19:25:18 model_runner.py:692] Loading model weights took 3.2067 GB
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] Exception in worker VllmWorkerProcess while processing method determine_num_available_blocks: shape mismatch: value tensor of shape [8192, 1024] cannot be broadcast to indexing result of shape [8192, 2048], Traceback (most recent call last):
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] File "/usr/local/lib/python3.10/dist-packages/vllm/executor/multiproc_worker_utils.py", line 223, in _run_worker_process
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] output = executor(*args, **kwargs)
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] return func(*args, **kwargs)
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] File "/usr/local/lib/python3.10/dist-packages/vllm/worker/worker.py", line 179, in determine_num_available_blocks
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] self.model_runner.profile_run()
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] return func(*args, **kwargs)
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] File "/usr/local/lib/python3.10/dist-packages/vllm/worker/model_runner.py", line 896, in profile_run
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] self.execute_model(model_input, kv_caches, intermediate_tensors)
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] return func(*args, **kwargs)
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] File "/usr/local/lib/python3.10/dist-packages/vllm/worker/model_runner.py", line 1314, in execute_model
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] hidden_or_intermediate_states = model_executable(
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] return self._call_impl(*args, **kwargs)
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] return forward_call(*args, **kwargs)
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/paligemma.py", line 259, in forward
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] inputs_embeds = merge_vision_embeddings(
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/utils.py", line 33, in merge_vision_embeddings
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] inputs_embeds[mask] = vision_embeddings.view(total_tokens, embed_dim)
(VllmWorkerProcess pid=161) ERROR 07-29 19:25:19 multiproc_worker_utils.py:226] RuntimeError: shape mismatch: value tensor of shape [8192, 1024] cannot be broadcast to indexing result of shape [8192, 2048]
This model works when not using tensor parallelism, but any level of tensor parallelism causes the issue above.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working