Skip to content

[Bug]: Unable to use fp8 kv cache with chunked prefill on ampere #7714

@w013nad

Description

@w013nad

Your current environment

The output of `python collect_env.py`
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.30.2
Libc version: glibc-2.31

Python version: 3.10.14 (main, Apr  6 2024, 18:45:05) [GCC 9.4.0] (64-bit runtime)
Python platform: Linux-4.18.0-425.19.2.el8_7.x86_64-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-40GB
GPU 1: NVIDIA A100-SXM4-40GB
GPU 2: NVIDIA A100-SXM4-40GB
GPU 3: NVIDIA A100-SXM4-40GB
GPU 4: NVIDIA A100-SXM4-40GB
GPU 5: NVIDIA A100-SXM4-40GB
GPU 6: NVIDIA A100-SXM4-40GB
GPU 7: NVIDIA A100-SXM4-40GB

Nvidia driver version: 525.105.17
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   43 bits physical, 48 bits virtual
CPU(s):                          256
On-line CPU(s) list:             0-255
Thread(s) per core:              2
Core(s) per socket:              64
Socket(s):                       2
NUMA node(s):                    8
Vendor ID:                       AuthenticAMD
CPU family:                      23
Model:                           49
Model name:                      AMD EPYC 7742 64-Core Processor
Stepping:                        0
Frequency boost:                 enabled
CPU MHz:                         2250.000
CPU max MHz:                     2250.0000
CPU min MHz:                     1500.0000
BogoMIPS:                        4491.45
Virtualization:                  AMD-V
L1d cache:                       4 MiB
L1i cache:                       4 MiB
L2 cache:                        64 MiB
L3 cache:                        512 MiB
NUMA node0 CPU(s):               0-15,128-143
NUMA node1 CPU(s):               16-31,144-159
NUMA node2 CPU(s):               32-47,160-175
NUMA node3 CPU(s):               48-63,176-191
NUMA node4 CPU(s):               64-79,192-207
NUMA node5 CPU(s):               80-95,208-223
NUMA node6 CPU(s):               96-111,224-239
NUMA node7 CPU(s):               112-127,240-255
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Mmio stale data:   Not affected
Vulnerability Retbleed:          Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es

Versions of relevant libraries:
[pip3] flashinfer==0.1.2+cu121torch2.4
[pip3] numpy==1.26.4
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] triton==3.0.0
[conda] Could not collectROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.4
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    NIC3    NIC4    NIC5    NIC6   NIC7                                                                                                                                                   NIC8     NIC9    CPU Affinity    NUMA Affinity
GPU0     X      NV12    NV12    NV12    NV12    NV12    NV12    NV12    PXB     PXB     SYS     SYS     SYS     SYS    SYS                                                                                                                                                    SYS      SYS     SYS     48-63,176-191   3
GPU1    NV12     X      NV12    NV12    NV12    NV12    NV12    NV12    PXB     PXB     SYS     SYS     SYS     SYS    SYS                                                                                                                                                    SYS      SYS     SYS     48-63,176-191   3
GPU2    NV12    NV12     X      NV12    NV12    NV12    NV12    NV12    SYS     SYS     PXB     PXB     SYS     SYS    SYS                                                                                                                                                    SYS      SYS     SYS     16-31,144-159   1
GPU3    NV12    NV12    NV12     X      NV12    NV12    NV12    NV12    SYS     SYS     PXB     PXB     SYS     SYS    SYS                                                                                                                                                    SYS      SYS     SYS     16-31,144-159   1
GPU4    NV12    NV12    NV12    NV12     X      NV12    NV12    NV12    SYS     SYS     SYS     SYS     PXB     PXB    SYS                                                                                                                                                    SYS      SYS     SYS     112-127,240-255 7
GPU5    NV12    NV12    NV12    NV12    NV12     X      NV12    NV12    SYS     SYS     SYS     SYS     PXB     PXB    SYS                                                                                                                                                    SYS      SYS     SYS     112-127,240-255 7
GPU6    NV12    NV12    NV12    NV12    NV12    NV12     X      NV12    SYS     SYS     SYS     SYS     SYS     SYS    PXB                                                                                                                                                    PXB      SYS     SYS     80-95,208-223   5
GPU7    NV12    NV12    NV12    NV12    NV12    NV12    NV12     X      SYS     SYS     SYS     SYS     SYS     SYS    PXB                                                                                                                                                    PXB      SYS     SYS     80-95,208-223   5
NIC0    PXB     PXB     SYS     SYS     SYS     SYS     SYS     SYS      X      PXB     SYS     SYS     SYS     SYS    SYS                                                                                                                                                    SYS      SYS     SYS
NIC1    PXB     PXB     SYS     SYS     SYS     SYS     SYS     SYS     PXB      X      SYS     SYS     SYS     SYS    SYS                                                                                                                                                    SYS      SYS     SYS
NIC2    SYS     SYS     PXB     PXB     SYS     SYS     SYS     SYS     SYS     SYS      X      PXB     SYS     SYS    SYS                                                                                                                                                    SYS      SYS     SYS
NIC3    SYS     SYS     PXB     PXB     SYS     SYS     SYS     SYS     SYS     SYS     PXB      X      SYS     SYS    SYS                                                                                                                                                    SYS      SYS     SYS
NIC4    SYS     SYS     SYS     SYS     PXB     PXB     SYS     SYS     SYS     SYS     SYS     SYS      X      PXB    SYS                                                                                                                                                    SYS      SYS     SYS
NIC5    SYS     SYS     SYS     SYS     PXB     PXB     SYS     SYS     SYS     SYS     SYS     SYS     PXB      X     SYS                                                                                                                                                    SYS      SYS     SYS
NIC6    SYS     SYS     SYS     SYS     SYS     SYS     PXB     PXB     SYS     SYS     SYS     SYS     SYS     SYS     X                                                                                                                                                     PXB      SYS     SYS
NIC7    SYS     SYS     SYS     SYS     SYS     SYS     PXB     PXB     SYS     SYS     SYS     SYS     SYS     SYS    PXB                                                                                                                                                     X       SYS     SYS
NIC8    SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS    SYS                                                                                                                                                    SYS       X      PIX
NIC9    SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS    SYS                                                                                                                                                    SYS      PIX      X

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4
  NIC5: mlx5_5
  NIC6: mlx5_6
  NIC7: mlx5_7
  NIC8: mlx5_8
  NIC9: mlx5_9

🐛 Describe the bug

I am running the nightly pip, pulled 9:00 PM EST 8/20/24. Running under docker image 0.5.4. I also tested the same commands under normal 0.5.4.

python3 -m vllm.entrypoints.openai.api_server --model /home/ndurkee/Meta-Llama-3.1-70B-Instruct-quantized.w8a16 -tp 8 --gpu-memory-utilization 0.995 --dtype auto --distributed-executor-backend mp --max-model-len 40000 --kv-cache-dtype fp8

This is the model I am using
https://huggingface.co/neuralmagic/Meta-Llama-3-70B-Instruct-quantized.w8a16

It also fails with
https://huggingface.co/neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8

(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226] Exception in worker VllmWorkerProcess while processing method start_worker_execution_loop: at 110:17:
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]                  cur_kv_head * stride_k_cache_h +
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]                  (offs_d[:, None] // x) * stride_k_cache_d +
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]                  ((start_n + offs_n[None, :]) % block_size) *
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]                  stride_k_cache_bl +
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]                  (offs_d[:, None] % x) * stride_k_cache_x)
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]         # [N,D]
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]         off_v = (
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]             bn[:, None] * stride_v_cache_bs +
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]             cur_kv_head * stride_v_cache_h +
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]             offs_d[None, :] * stride_v_cache_d +
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]             (start_n + offs_n[:, None]) % block_size * stride_v_cache_bl)
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]         k_load = tl.load(K_cache + off_k,
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]                  ^, Traceback (most recent call last):
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]   File "/usr/local/lib/python3.10/dist-packages/triton/language/core.py", line 35, in wrapper
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]     return fn(*args, **kwargs)
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]   File "/usr/local/lib/python3.10/dist-packages/triton/language/core.py", line 1597, in load
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]     return semantic.load(pointer, mask, other, boundary_check, padding_option, cache_modifier, eviction_policy,
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]   File "/usr/local/lib/python3.10/dist-packages/triton/language/semantic.py", line 1037, in load
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]     return _load_legacy(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder)
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]   File "/usr/local/lib/python3.10/dist-packages/triton/language/semantic.py", line 1005, in _load_legacy
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]     other = cast(other, elt_ty, builder)
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]   File "/usr/local/lib/python3.10/dist-packages/triton/language/semantic.py", line 759, in cast
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226]     assert builder.options.allow_fp8e4nv, "fp8e4nv data type is not supported on CUDA arch < 89"
(VllmWorkerProcess pid=4055) ERROR 08-21 01:06:31 multiproc_worker_utils.py:226] AssertionError: fp8e4nv data type is not supported on CUDA arch < 89

However, all of these commands work.

python3 -m vllm.entrypoints.openai.api_server --model /home/ndurkee/Meta-Llama-3.1-70B-Instruct-quantized.w8a16 -tp 8 --gpu-memory-utilization 0.995 --dtype auto --distributed-executor-backend mp --max-model-len 40000
python3 -m vllm.entrypoints.openai.api_server --model /home/ndurkee/Llama-3-8B-Instruct-GPTQ-4-Bit -tp 8 --gpu-memory-utilization 0.995 --dtype auto --distributed-executor-backend mp --max-model-len 4000 --kv-cache-dtype fp8
python3 -m vllm.entrypoints.openai.api_server --model /home/ndurkee/Llama-3-8B-Instruct -tp 8 --gpu-memory-utilization 0.995 --dtype auto --distributed-executor-backend mp --max-model-len 4000 --kv-cache-dtype fp8 --quantization fp8
python3 -m vllm.entrypoints.openai.api_server --model /home/ndurkee/Llama-3-8B-Instruct -tp 8 --gpu-memory-utilization 0.995 --dtype auto --distributed-executor-backend mp --max-model-len 4000 --kv-cache-dtype fp8

It appears to be something to do with neuralmagic's quants and the fp8 cache. It appears to be setting the fp8 cache to a dtype that is not possible under ampere. However, forcibly setting the dtype to fp8_e5m2 or fp8_e4m3 do not work either likely due to the precomputed scales in the quants. Let me know if I should post this to neuralmagic but I figure they're heavily involved here anyway and there might be a vllm solution as well (I noticed you guys managed to get the neuralmagic quants running ampere in 0.5.3, thank you!).

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workingstaleOver 90 days of inactivity

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions