-
-
Notifications
You must be signed in to change notification settings - Fork 10.7k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.0
Libc version: glibc-2.35
Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.4.119-19.0009.40-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.5.82
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA L20
GPU 1: NVIDIA L20
GPU 2: NVIDIA L20
GPU 3: NVIDIA L20
GPU 4: NVIDIA L20
GPU 5: NVIDIA L20
GPU 6: NVIDIA L20
GPU 7: NVIDIA L20
Nvidia driver version: 535.161.07
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 384
On-line CPU(s) list: 0-383
Vendor ID: AuthenticAMD
Model name: AMD EPYC 9K84 96-Core Processor
CPU family: 25
Model: 17
Thread(s) per core: 2
Core(s) per socket: 96
Socket(s): 2
Stepping: 0
BogoMIPS: 5200.05
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single ibpb vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 avx512_bf16 clzero xsaveerptr wbnoinvd arat avx512vbmi umip avx512_vbmi2 vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 6 MiB (192 instances)
L1i cache: 6 MiB (192 instances)
L2 cache: 192 MiB (192 instances)
L3 cache: 768 MiB (24 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-191
NUMA node1 CPU(s): 192-383
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Full AMD retpoline, IBPB conditional, STIBP disabled, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.24.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] onnx==1.16.0
[pip3] optree==0.12.1
[pip3] pytorch-triton==3.0.0+989adb9a2
[pip3] pyzmq==26.0.3
[pip3] torch==2.4.0
[pip3] torch-tensorrt==2.5.0a0
[pip3] torchvision==0.19.0
[pip3] transformers==4.44.1
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.4
vLLM Build Flags:
CUDA Archs: 5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX; ROCm: Disabled; Neuron: Disabled
GPU Topology:
�[4mGPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID�[0m
GPU0 X NODE NODE NODE SYS SYS SYS SYS 0-191 0 N/A
GPU1 NODE X PIX NODE SYS SYS SYS SYS 0-191 0 N/A
GPU2 NODE PIX X NODE SYS SYS SYS SYS 0-191 0 N/A
GPU3 NODE NODE NODE X SYS SYS SYS SYS 0-191 0 N/A
GPU4 SYS SYS SYS SYS X NODE NODE NODE 192-383 1 N/A
GPU5 SYS SYS SYS SYS NODE X PIX NODE 192-383 1 N/A
GPU6 SYS SYS SYS SYS NODE PIX X NODE 192-383 1 N/A
GPU7 SYS SYS SYS SYS NODE NODE NODE X 192-383 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
🐛 Describe the bug
Using the new fp8 cutlass scaled_mm kernel (merged in #6677), I got some weird output like "ROUP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!". Token ids of the output are something like 18347, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
. I am using vllm 0.5.4, and a model finetuned from https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
@varun-sundar-rabindranath @mgoin
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working