Skip to content

[Usage]: how can i perfrome multiimage inference? in MiniCPM-V-2_6 model or any vision language model with vllm? #8215

@dahwin

Description

@dahwin

`from PIL import Image
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
import torch

MODEL_NAME = "openbmb/MiniCPM-V-2_6"

image = Image.open("dubu.png").convert("RGB")

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)

context_length = 2000
num_device = 1
llm = LLM(model=MODEL_NAME, speculative_max_model_len =context_length ,max_seq_len_to_capture=context_length,max_model_len=context_length
, tensor_parallel_size=num_device,trust_remote_code=True ,worker_use_ray=num_device, quantization="fp8"

    ,gpu_memory_utilization = 0.95 ,  )

messages = [{'role': 'user', 'content': '(./)\n' + 'what is in this image?'}]

prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

stop_tokens = ['<|im_end|>', '<|endoftext|>']
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]

sampling_params = SamplingParams(

temperature=0.9,

max_tokens=2000,
best_of=3)

outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {
"image": image
}
}, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)`

I have already givem the way i like to use vllm in my script

Metadata

Metadata

Assignees

No one assigned

    Labels

    usageHow to use vllm

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions