Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 4 additions & 37 deletions vllm/attention/layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,22 +210,19 @@ def __init__(
self.scale = scale
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads

assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads

dtype = torch.get_default_dtype()
attn_backend = get_attn_backend(head_size,
dtype,
kv_cache_dtype=None,
block_size=16,
is_attention_free=False)
backend = backend_name_to_enum(attn_backend.get_name())
if backend in {_Backend.FLASH_ATTN, _Backend.FLASH_ATTN_VLLM_V1}:
backend = _Backend.XFORMERS

self.attn_backend = backend if backend in {
_Backend.TORCH_SDPA,
_Backend.XFORMERS,
_Backend.FLASH_ATTN,
_Backend.FLASH_ATTN_VLLM_V1,
} else _Backend.TORCH_SDPA

def forward(
Expand All @@ -235,45 +232,15 @@ def forward(
value: torch.Tensor,
) -> torch.Tensor:
"""Input shape: batch_size x seq_len x hidden_size"""
# TODO(Isotr0py): Use existing backend implementations and support FA3
bsz, q_len, _ = query.size()
kv_len = key.size(1)

query = query.view(bsz, q_len, self.num_heads, self.head_size)
key = key.view(bsz, kv_len, self.num_kv_heads, self.head_size)
value = value.view(bsz, kv_len, self.num_kv_heads, self.head_size)

if (num_repeat := self.num_queries_per_kv) > 1:
# Handle MQA and GQA
key = torch.repeat_interleave(key, num_repeat, dim=2)
value = torch.repeat_interleave(value, num_repeat, dim=2)

if self.attn_backend in {
_Backend.FLASH_ATTN,
_Backend.FLASH_ATTN_VLLM_V1,
}:
from vllm.vllm_flash_attn import flash_attn_varlen_func

cu_seqlens_q = torch.arange(0, (bsz + 1) * q_len,
step=q_len,
dtype=torch.int32,
device=query.device)
cu_seqlens_k = torch.arange(0, (bsz + 1) * kv_len,
step=kv_len,
dtype=torch.int32,
device=key.device)

out = flash_attn_varlen_func(
query.flatten(0, 1),
key.flatten(0, 1),
value.flatten(0, 1),
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=q_len,
max_seqlen_k=kv_len,
softmax_scale=self.scale,
)
out = out.reshape(bsz, q_len, -1)
elif self.attn_backend == _Backend.XFORMERS:
if self.attn_backend == _Backend.XFORMERS:
from xformers import ops as xops

out = xops.memory_efficient_attention_forward(query,
Expand Down
Loading