-
-
Notifications
You must be signed in to change notification settings - Fork 10.8k
[doc] Add RAG Integration example #17692
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
7ab9942
[doc] Add RAG Integration example
reidliu41 dbe5db5
update llamaindex with config
reidliu41 0306fb6
auto generate help
reidliu41 d0ba49e
Merge remote-tracking branch 'upstream/main' into add-rag
reidliu41 ef033cc
add mock imports
reidliu41 7acaf4a
add missing mock imports
reidliu41 9370c3d
correct the name
reidliu41 0ab9508
remove help text
reidliu41 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -11,6 +11,7 @@ helm | |
| lws | ||
| modal | ||
| open-webui | ||
| retrieval_augmented_generation | ||
| skypilot | ||
| streamlit | ||
| triton | ||
|
|
||
84 changes: 84 additions & 0 deletions
84
docs/source/deployment/frameworks/retrieval_augmented_generation.md
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,84 @@ | ||
| (deployment-retrieval-augmented-generation)= | ||
|
|
||
| # Retrieval-Augmented Generation | ||
|
|
||
| [Retrieval-augmented generation (RAG)](https://en.wikipedia.org/wiki/Retrieval-augmented_generation) is a technique that enables generative artificial intelligence (Gen AI) models to retrieve and incorporate new information. It modifies interactions with a large language model (LLM) so that the model responds to user queries with reference to a specified set of documents, using this information to supplement information from its pre-existing training data. This allows LLMs to use domain-specific and/or updated information. Use cases include providing chatbot access to internal company data or generating responses based on authoritative sources. | ||
|
|
||
| Here are the integrations: | ||
| - vLLM + [langchain](https://github.com/langchain-ai/langchain) + [milvus](https://github.com/milvus-io/milvus) | ||
| - vLLM + [llamaindex](https://github.com/run-llama/llama_index) + [milvus](https://github.com/milvus-io/milvus) | ||
|
|
||
| ## vLLM + langchain | ||
|
|
||
| ### Prerequisites | ||
|
|
||
| - Setup vLLM and langchain environment | ||
|
|
||
| ```console | ||
| pip install -U vllm \ | ||
| langchain_milvus langchain_openai \ | ||
| langchain_community beautifulsoup4 \ | ||
| langchain-text-splitters | ||
| ``` | ||
|
|
||
| ### Deploy | ||
|
|
||
| - Start the vLLM server with the supported embedding model, e.g. | ||
|
|
||
| ```console | ||
| # Start embedding service (port 8000) | ||
| vllm serve ssmits/Qwen2-7B-Instruct-embed-base | ||
| ``` | ||
|
|
||
| - Start the vLLM server with the supported chat completion model, e.g. | ||
|
|
||
| ```console | ||
| # Start chat service (port 8001) | ||
| vllm serve qwen/Qwen1.5-0.5B-Chat --port 8001 | ||
| ``` | ||
|
|
||
| - Use the script: <gh-file:examples/online_serving/retrieval_augmented_generation_with_langchain.py> | ||
|
|
||
| - Run the script | ||
|
|
||
| ```python | ||
| python retrieval_augmented_generation_with_langchain.py | ||
| ``` | ||
|
|
||
| ## vLLM + llamaindex | ||
|
|
||
| ### Prerequisites | ||
|
|
||
| - Setup vLLM and llamaindex environment | ||
|
|
||
| ```console | ||
| pip install vllm \ | ||
| llama-index llama-index-readers-web \ | ||
| llama-index-llms-openai-like \ | ||
| llama-index-embeddings-openai-like \ | ||
| llama-index-vector-stores-milvus \ | ||
| ``` | ||
|
|
||
| ### Deploy | ||
|
|
||
| - Start the vLLM server with the supported embedding model, e.g. | ||
|
|
||
| ```console | ||
| # Start embedding service (port 8000) | ||
| vllm serve ssmits/Qwen2-7B-Instruct-embed-base | ||
| ``` | ||
|
|
||
| - Start the vLLM server with the supported chat completion model, e.g. | ||
|
|
||
| ```console | ||
| # Start chat service (port 8001) | ||
| vllm serve qwen/Qwen1.5-0.5B-Chat --port 8001 | ||
| ``` | ||
|
|
||
| - Use the script: <gh-file:examples/online_serving/retrieval_augmented_generation_with_llamaindex.py> | ||
|
|
||
| - Run the script | ||
|
|
||
| ```python | ||
| python retrieval_augmented_generation_with_llamaindex.py | ||
| ``` |
249 changes: 249 additions & 0 deletions
249
examples/online_serving/retrieval_augmented_generation_with_langchain.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,249 @@ | ||
| # SPDX-License-Identifier: Apache-2.0 | ||
| """ | ||
| Retrieval Augmented Generation (RAG) Implementation with Langchain | ||
| ================================================================== | ||
|
|
||
| This script demonstrates a RAG implementation using LangChain, Milvus | ||
| and vLLM. RAG enhances LLM responses by retrieving relevant context | ||
| from a document collection. | ||
|
|
||
| Features: | ||
| - Web content loading and chunking | ||
| - Vector storage with Milvus | ||
| - Embedding generation with vLLM | ||
| - Question answering with context | ||
|
|
||
| Prerequisites: | ||
| 1. Install dependencies: | ||
| pip install -U vllm \ | ||
| langchain_milvus langchain_openai \ | ||
| langchain_community beautifulsoup4 \ | ||
| langchain-text-splitters | ||
|
|
||
| 2. Start services: | ||
| # Start embedding service (port 8000) | ||
| vllm serve ssmits/Qwen2-7B-Instruct-embed-base | ||
|
|
||
| # Start chat service (port 8001) | ||
| vllm serve qwen/Qwen1.5-0.5B-Chat --port 8001 | ||
|
|
||
| Usage: | ||
| python retrieval_augmented_generation_with_langchain.py | ||
|
|
||
| Notes: | ||
| - Ensure both vLLM services are running before executing | ||
| - Default ports: 8000 (embedding), 8001 (chat) | ||
| - First run may take time to download models | ||
| """ | ||
|
|
||
| import argparse | ||
| from argparse import Namespace | ||
| from typing import Any | ||
|
|
||
| from langchain_community.document_loaders import WebBaseLoader | ||
| from langchain_core.documents import Document | ||
| from langchain_core.output_parsers import StrOutputParser | ||
| from langchain_core.prompts import PromptTemplate | ||
| from langchain_core.runnables import RunnablePassthrough | ||
| from langchain_milvus import Milvus | ||
| from langchain_openai import ChatOpenAI, OpenAIEmbeddings | ||
| from langchain_text_splitters import RecursiveCharacterTextSplitter | ||
|
|
||
|
|
||
| def load_and_split_documents(config: dict[str, Any]): | ||
| """ | ||
| Load and split documents from web URL | ||
| """ | ||
| try: | ||
| loader = WebBaseLoader(web_paths=(config["url"], )) | ||
| docs = loader.load() | ||
|
|
||
| text_splitter = RecursiveCharacterTextSplitter( | ||
| chunk_size=config["chunk_size"], | ||
| chunk_overlap=config["chunk_overlap"], | ||
| ) | ||
| return text_splitter.split_documents(docs) | ||
| except Exception as e: | ||
| print(f"Error loading document from {config['url']}: {str(e)}") | ||
| raise | ||
|
|
||
|
|
||
| def init_vectorstore(config: dict[str, Any], documents: list[Document]): | ||
| """ | ||
| Initialize vector store with documents | ||
| """ | ||
| return Milvus.from_documents( | ||
| documents=documents, | ||
| embedding=OpenAIEmbeddings( | ||
| model=config["embedding_model"], | ||
| openai_api_key=config["vllm_api_key"], | ||
| openai_api_base=config["vllm_embedding_endpoint"], | ||
| ), | ||
| connection_args={"uri": config["uri"]}, | ||
| drop_old=True, | ||
| ) | ||
|
|
||
|
|
||
| def init_llm(config: dict[str, Any]): | ||
| """ | ||
| Initialize llm | ||
| """ | ||
| return ChatOpenAI( | ||
| model=config["chat_model"], | ||
| openai_api_key=config["vllm_api_key"], | ||
| openai_api_base=config["vllm_chat_endpoint"], | ||
| ) | ||
|
|
||
|
|
||
| def get_qa_prompt(): | ||
| """ | ||
| Get question answering prompt template | ||
| """ | ||
| template = """You are an assistant for question-answering tasks. | ||
| Use the following pieces of retrieved context to answer the question. | ||
| If you don't know the answer, just say that you don't know. | ||
| Use three sentences maximum and keep the answer concise. | ||
| Question: {question} | ||
| Context: {context} | ||
| Answer: | ||
| """ | ||
| return PromptTemplate.from_template(template) | ||
|
|
||
|
|
||
| def format_docs(docs: list[Document]): | ||
| """ | ||
| Format documents for prompt | ||
| """ | ||
| return "\n\n".join(doc.page_content for doc in docs) | ||
|
|
||
|
|
||
| def create_qa_chain(retriever: Any, llm: ChatOpenAI, prompt: PromptTemplate): | ||
| """ | ||
| Set up question answering chain | ||
| """ | ||
| return ({ | ||
| "context": retriever | format_docs, | ||
| "question": RunnablePassthrough(), | ||
| } | ||
| | prompt | ||
| | llm | ||
| | StrOutputParser()) | ||
|
|
||
|
|
||
| def get_parser() -> argparse.ArgumentParser: | ||
| """ | ||
| Parse command line arguments | ||
| """ | ||
| parser = argparse.ArgumentParser(description='RAG with vLLM and langchain') | ||
|
|
||
| # Add command line arguments | ||
| parser.add_argument('--vllm-api-key', | ||
| default="EMPTY", | ||
| help='API key for vLLM compatible services') | ||
| parser.add_argument('--vllm-embedding-endpoint', | ||
| default="http://localhost:8000/v1", | ||
| help='Base URL for embedding service') | ||
| parser.add_argument('--vllm-chat-endpoint', | ||
| default="http://localhost:8001/v1", | ||
| help='Base URL for chat service') | ||
| parser.add_argument('--uri', | ||
| default="./milvus.db", | ||
| help='URI for Milvus database') | ||
| parser.add_argument( | ||
| '--url', | ||
| default=("https://docs.vllm.ai/en/latest/getting_started/" | ||
| "quickstart.html"), | ||
| help='URL of the document to process') | ||
| parser.add_argument('--embedding-model', | ||
| default="ssmits/Qwen2-7B-Instruct-embed-base", | ||
| help='Model name for embeddings') | ||
| parser.add_argument('--chat-model', | ||
| default="qwen/Qwen1.5-0.5B-Chat", | ||
| help='Model name for chat') | ||
| parser.add_argument('-i', | ||
| '--interactive', | ||
| action='store_true', | ||
| help='Enable interactive Q&A mode') | ||
| parser.add_argument('-k', | ||
| '--top-k', | ||
| type=int, | ||
| default=3, | ||
| help='Number of top results to retrieve') | ||
| parser.add_argument('-c', | ||
| '--chunk-size', | ||
| type=int, | ||
| default=1000, | ||
| help='Chunk size for document splitting') | ||
| parser.add_argument('-o', | ||
| '--chunk-overlap', | ||
| type=int, | ||
| default=200, | ||
| help='Chunk overlap for document splitting') | ||
|
|
||
| return parser | ||
|
|
||
|
|
||
| def init_config(args: Namespace): | ||
| """ | ||
| Initialize configuration settings from command line arguments | ||
| """ | ||
|
|
||
| return { | ||
| "vllm_api_key": args.vllm_api_key, | ||
| "vllm_embedding_endpoint": args.vllm_embedding_endpoint, | ||
| "vllm_chat_endpoint": args.vllm_chat_endpoint, | ||
| "uri": args.uri, | ||
| "embedding_model": args.embedding_model, | ||
| "chat_model": args.chat_model, | ||
| "url": args.url, | ||
| "chunk_size": args.chunk_size, | ||
| "chunk_overlap": args.chunk_overlap, | ||
| "top_k": args.top_k | ||
| } | ||
|
|
||
|
|
||
| def main(): | ||
| # Parse command line arguments | ||
| args = get_parser().parse_args() | ||
|
|
||
| # Initialize configuration | ||
| config = init_config(args) | ||
|
|
||
| # Load and split documents | ||
| documents = load_and_split_documents(config) | ||
|
|
||
| # Initialize vector store and retriever | ||
| vectorstore = init_vectorstore(config, documents) | ||
| retriever = vectorstore.as_retriever(search_kwargs={"k": config["top_k"]}) | ||
|
|
||
| # Initialize llm and prompt | ||
| llm = init_llm(config) | ||
| prompt = get_qa_prompt() | ||
|
|
||
| # Set up QA chain | ||
| qa_chain = create_qa_chain(retriever, llm, prompt) | ||
|
|
||
| # Interactive mode | ||
| if args.interactive: | ||
| print("\nWelcome to Interactive Q&A System!") | ||
| print("Enter 'q' or 'quit' to exit.") | ||
|
|
||
| while True: | ||
| question = input("\nPlease enter your question: ") | ||
| if question.lower() in ['q', 'quit']: | ||
| print("\nThank you for using! Goodbye!") | ||
| break | ||
|
|
||
| output = qa_chain.invoke(question) | ||
| print(output) | ||
| else: | ||
| # Default single question mode | ||
| question = ("How to install vLLM?") | ||
| output = qa_chain.invoke(question) | ||
| print("-" * 50) | ||
| print(output) | ||
| print("-" * 50) | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| main() | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.