Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
90 changes: 59 additions & 31 deletions vllm/v1/attention/backends/mla/rocm_aiter_mla.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

from dataclasses import dataclass
from typing import Any, Optional
from typing import Any, ClassVar, Optional

import torch

Expand Down Expand Up @@ -63,63 +63,91 @@ class AiterMLAMetadata(MLACommonMetadata[AiterMLADecodeMetadata]):


class AiterMLAMetadataBuilder(MLACommonMetadataBuilder[AiterMLAMetadata]):
full_cudagraph_supported: ClassVar[bool] = True # decode only

def __init__(self, runner, kv_cache_spec: AttentionSpec,
block_table: BlockTable):
super().__init__(runner, kv_cache_spec, block_table, AiterMLAMetadata)
assert self.kv_cache_spec.block_size == 1, "AITER MLA" \
"only supports block size 1."

def _get_paged_kv_tensors(
self, block_table: torch.Tensor,
seq_lens: torch.Tensor) -> tuple[torch.Tensor, ...]:
# Preparing persistent buffers
if self.runner.full_cuda_graph:
device = self.runner.device
max_num_reqs = self.runner.max_num_reqs
self.paged_kv_indptr = torch.zeros(max_num_reqs + 1,
dtype=torch.int32,
device=device)
self.paged_kv_indices = torch.zeros(
block_table.get_device_tensor().numel(
), # max num pages possible
dtype=torch.int32,
device=device)
self.paged_kv_last_page_len = torch.zeros(max_num_reqs,
dtype=torch.int32,
device=device)

self.qo_indptr = torch.arange(0,
max_num_reqs + 1,
dtype=torch.int32,
device=device)

def _build_decode(self, block_table_tensor: torch.Tensor,
seq_lens: torch.Tensor) -> AiterMLADecodeMetadata:
page_size = self.kv_cache_spec.block_size
block_table_bounds = (seq_lens + page_size - 1) // page_size
device = self.runner.device

mask = (torch.arange(block_table.size(1),
dtype=block_table.dtype,
mask = (torch.arange(block_table_tensor.size(1),
dtype=block_table_tensor.dtype,
device=device).unsqueeze(0)
< block_table_bounds.unsqueeze(1))
paged_kv_indices = block_table[mask]
paged_kv_indices = block_table_tensor[mask]

paged_kv_last_page_len = seq_lens % page_size
paged_kv_last_page_len = torch.where(paged_kv_last_page_len == 0,
page_size, paged_kv_last_page_len)

paged_kv_indptr = torch.cat([
torch.zeros(1, dtype=block_table_bounds.dtype, device=device),
block_table_bounds.cumsum(dim=0, dtype=torch.int32)
])

paged_kv_last_page_len = seq_lens % page_size
paged_kv_last_page_len = torch.where(paged_kv_last_page_len == 0,
page_size, paged_kv_last_page_len)
qo_indptr = torch.arange(0,
self._num_decodes + 1,
step=1,
dtype=torch.int32,
device=device)

return (
paged_kv_indices,
paged_kv_indptr,
paged_kv_last_page_len,
qo_indptr,
)
if self.runner.full_cuda_graph:
num_reqs = self._num_decodes

def _build_decode(self, block_table_tensor: torch.Tensor,
seq_lens: torch.Tensor) -> AiterMLADecodeMetadata:
num_actual_pages = paged_kv_indices.size(0)

self.paged_kv_indices[:num_actual_pages].copy_(paged_kv_indices,
non_blocking=True)
self.paged_kv_indices[num_actual_pages:].fill_(-1)
paged_kv_indices = self.paged_kv_indices[:num_actual_pages]

self.paged_kv_indptr[:1 + num_reqs].copy_(paged_kv_indptr,
non_blocking=True)
self.paged_kv_indptr[1 + num_reqs:].fill_(paged_kv_indptr[-1])
paged_kv_indptr = self.paged_kv_indptr[:1 + num_reqs]

self.paged_kv_last_page_len[:num_reqs].copy_(
paged_kv_last_page_len, non_blocking=True)
self.paged_kv_last_page_len[num_reqs:].fill_(1)
paged_kv_last_page_len = self.paged_kv_last_page_len[:num_reqs]

qo_indptr = self.qo_indptr[:1 + num_reqs]

(
paged_kv_indices,
paged_kv_indptr,
paged_last_page_len,
qo_indptr,
) = self._get_paged_kv_tensors(block_table_tensor, seq_lens)
else:
qo_indptr = torch.arange(0,
self._num_decodes + 1,
step=1,
dtype=torch.int32,
device=device)

attn_metadata = AiterMLADecodeMetadata(
block_table=block_table_tensor,
seq_lens=seq_lens,
paged_kv_indptr=paged_kv_indptr,
paged_kv_indices=paged_kv_indices,
paged_kv_last_page_len=paged_last_page_len,
paged_kv_last_page_len=paged_kv_last_page_len,
qo_indptr=qo_indptr)

return attn_metadata
Expand Down