Skip to content

Conversation

@yuanfz98
Copy link
Contributor

@yuanfz98 yuanfz98 commented Aug 5, 2022

Follow up of #9694.

  1. batch_norm returns a list and it might be tricky to
  • apply autotvm and add tiling stages. Need to unpack list object. (here node is a list)
  • fuse with other kElemwise ops. I found that when batch_norm+relu, all 3 outputs [output, moving_mean, moving_var] are fused with relu and the latter 2 make no sense. Is it possible to select which node to fuse?
  1. observed better perf with larger workloads due to parallism (Intel(R) Xeon(R) CPU @ 2.30GHz, 8cores)
shape=160, key=generic= {'mean': 0.48806950988364406, 'median': 0.02051979972748086, 'std': 1.402288376912746}
shape=160, key=cpu= {'mean': 0.49737747001927346, 'median': 0.04554405022645369, 'std': 1.3545420627182678}
shape=1600, key=generic= {'mean': 4.354905650106957, 'median': 0.03478030048427172, 'std': 12.959578536273051}
shape=1600, key=cpu= {'mean': 1.4397647402074654, 'median': 0.0432861503213644, 'std': 4.19046676508887}
shape=16000, key=generic= {'mean': 2.161924099782482, 'median': 0.051916949450969696, 'std': 6.330056129490704}
shape=16000, key=cpu= {'mean': 1.2180674902629107, 'median': 0.054580300638917834, 'std': 3.488364687811132}
shape=160000, key=generic= {'mean': 2.184136709984159, 'median': 0.23043325054459274, 'std': 5.860211833531447}
shape=160000, key=cpu= {'mean': 1.2610028796189, 'median': 0.1792462993762456, 'std': 3.2444646099107004}

@masahi masahi merged commit bd763d3 into apache:main Aug 9, 2022
xinetzone pushed a commit to daobook/tvm that referenced this pull request Nov 25, 2022
* format black

* format black

* docstring

* typo
mikeseven pushed a commit to mikeseven/tvm that referenced this pull request Sep 27, 2023
* format black

* format black

* docstring

* typo
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants