Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 26 additions & 19 deletions vllm/model_executor/layers/mamba/mamba2_metadata.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,21 +24,23 @@ class Mamba2Metadata:
chunk_offsets: torch.Tensor


def _seq_idx_to_chunk_indices_offsets(seq_idx, chunk_size: int):
def _query_start_loc_to_chunk_indices_offsets(query_start_loc: torch.Tensor,
chunk_size: int,
total_seqlens: int):

# convert seq_idx to chunk indices and offsets
# - derive the cu_seqlens
_, cu_seqlens = torch.where(seq_idx.diff())
cu_seqlens += 1
cu_seqlens = query_start_loc[1:] # remove prepended 0

# outputs will have length expansion of chunks that do not divide
# chunk_size
N = math.ceil(seq_idx.shape[-1] / chunk_size) + (cu_seqlens % chunk_size
> 0).sum()
chunk_indices = torch.arange(N, dtype=torch.int, device=seq_idx.device)
chunk_offsets = torch.zeros((N, ), dtype=torch.int, device=seq_idx.device)
N = math.ceil(total_seqlens / chunk_size) + (cu_seqlens[:-1] % chunk_size
> 0).sum()
chunk_indices = torch.arange(N,
dtype=torch.int,
device=query_start_loc.device)
chunk_offsets = torch.zeros((N, ),
dtype=torch.int,
device=query_start_loc.device)

cu_seqlens = cu_seqlens.tolist() + [seq_idx.shape[-1]]
p = 0 # num of insertions
for s, e in zip(cu_seqlens[:-1], cu_seqlens[1:]):

Expand Down Expand Up @@ -80,13 +82,15 @@ def prepare_mamba2_metadata(
seq_idx = None
chunk_indices, chunk_offsets = None, None
if has_prefill:
seq_idx = torch.zeros_like(input_ids, dtype=torch.int32)
for i, (srt, end) in enumerate(
zip(
attn_metadata.query_start_loc,
attn_metadata.query_start_loc[1:],
)):
seq_idx[srt:end] = i
seqlens = attn_metadata.query_start_loc.diff()
total_seqlens = len(input_ids)

seq_idx = torch.repeat_interleave(torch.arange(
len(attn_metadata.query_start_loc) - 1,
dtype=torch.int32,
device=attn_metadata.query_start_loc.device),
seqlens,
output_size=total_seqlens)
seq_idx.unsqueeze_(0)

# compute metadata for chunked prefill.
Expand All @@ -97,8 +101,11 @@ def prepare_mamba2_metadata(
# compute them once at the top level model forward and reuse
# them in mamba layers. If not needed, they will be ignored
# inside mamba kernels.
chunk_indices, chunk_offsets = _seq_idx_to_chunk_indices_offsets(
seq_idx, chunk_size)
chunk_indices, chunk_offsets = \
_query_start_loc_to_chunk_indices_offsets(
attn_metadata.query_start_loc,
chunk_size=chunk_size,
total_seqlens=total_seqlens)

return Mamba2Metadata(has_prefill=has_prefill,
has_initial_states=has_initial_states,
Expand Down