forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 2
Bump postgresql from 42.3.3 to 42.4.1 #9
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
dependabot
wants to merge
1
commit into
master
from
dependabot/maven/org.postgresql-postgresql-42.4.1
Closed
Bump postgresql from 42.3.3 to 42.4.1 #9
dependabot
wants to merge
1
commit into
master
from
dependabot/maven/org.postgresql-postgresql-42.4.1
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Bumps [postgresql](https://github.com/pgjdbc/pgjdbc) from 42.3.3 to 42.4.1. - [Release notes](https://github.com/pgjdbc/pgjdbc/releases) - [Changelog](https://github.com/pgjdbc/pgjdbc/blob/master/CHANGELOG.md) - [Commits](pgjdbc/pgjdbc@REL42.3.3...REL42.4.1) --- updated-dependencies: - dependency-name: org.postgresql:postgresql dependency-type: direct:production ... Signed-off-by: dependabot[bot] <[email protected]>
Author
|
Looks like org.postgresql:postgresql is up-to-date now, so this is no longer needed. |
pull bot
pushed a commit
that referenced
this pull request
Feb 24, 2024
…n properly
### What changes were proposed in this pull request?
Make `ResolveRelations` handle plan id properly
### Why are the changes needed?
bug fix for Spark Connect, it won't affect classic Spark SQL
before this PR:
```
from pyspark.sql import functions as sf
spark.range(10).withColumn("value_1", sf.lit(1)).write.saveAsTable("test_table_1")
spark.range(10).withColumnRenamed("id", "index").withColumn("value_2", sf.lit(2)).write.saveAsTable("test_table_2")
df1 = spark.read.table("test_table_1")
df2 = spark.read.table("test_table_2")
df3 = spark.read.table("test_table_1")
join1 = df1.join(df2, on=df1.id==df2.index).select(df2.index, df2.value_2)
join2 = df3.join(join1, how="left", on=join1.index==df3.id)
join2.schema
```
fails with
```
AnalysisException: [CANNOT_RESOLVE_DATAFRAME_COLUMN] Cannot resolve dataframe column "id". It's probably because of illegal references like `df1.select(df2.col("a"))`. SQLSTATE: 42704
```
That is due to existing plan caching in `ResolveRelations` doesn't work with Spark Connect
```
=== Applying Rule org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations ===
'[#12]Join LeftOuter, '`==`('index, 'id) '[#12]Join LeftOuter, '`==`('index, 'id)
!:- '[#9]UnresolvedRelation [test_table_1], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1
!+- '[#11]Project ['index, 'value_2] : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false
! +- '[#10]Join Inner, '`==`('id, 'index) +- '[#11]Project ['index, 'value_2]
! :- '[#7]UnresolvedRelation [test_table_1], [], false +- '[#10]Join Inner, '`==`('id, 'index)
! +- '[#8]UnresolvedRelation [test_table_2], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1
! : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false
! +- '[#8]SubqueryAlias spark_catalog.default.test_table_2
! +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_2`, [], false
Can not resolve 'id with plan 7
```
`[#7]UnresolvedRelation [test_table_1], [], false` was wrongly resolved to the cached one
```
:- '[#9]SubqueryAlias spark_catalog.default.test_table_1
+- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false
```
### Does this PR introduce _any_ user-facing change?
yes, bug fix
### How was this patch tested?
added ut
### Was this patch authored or co-authored using generative AI tooling?
ci
Closes apache#45214 from zhengruifeng/connect_fix_read_join.
Authored-by: Ruifeng Zheng <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
wangyum
pushed a commit
that referenced
this pull request
Jun 26, 2024
…plan properly ### What changes were proposed in this pull request? Make `ResolveRelations` handle plan id properly cherry-pick bugfix apache#45214 to 3.5 ### Why are the changes needed? bug fix for Spark Connect, it won't affect classic Spark SQL before this PR: ``` from pyspark.sql import functions as sf spark.range(10).withColumn("value_1", sf.lit(1)).write.saveAsTable("test_table_1") spark.range(10).withColumnRenamed("id", "index").withColumn("value_2", sf.lit(2)).write.saveAsTable("test_table_2") df1 = spark.read.table("test_table_1") df2 = spark.read.table("test_table_2") df3 = spark.read.table("test_table_1") join1 = df1.join(df2, on=df1.id==df2.index).select(df2.index, df2.value_2) join2 = df3.join(join1, how="left", on=join1.index==df3.id) join2.schema ``` fails with ``` AnalysisException: [CANNOT_RESOLVE_DATAFRAME_COLUMN] Cannot resolve dataframe column "id". It's probably because of illegal references like `df1.select(df2.col("a"))`. SQLSTATE: 42704 ``` That is due to existing plan caching in `ResolveRelations` doesn't work with Spark Connect ``` === Applying Rule org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations === '[#12]Join LeftOuter, '`==`('index, 'id) '[#12]Join LeftOuter, '`==`('index, 'id) !:- '[#9]UnresolvedRelation [test_table_1], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 !+- '[#11]Project ['index, 'value_2] : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[#10]Join Inner, '`==`('id, 'index) +- '[#11]Project ['index, 'value_2] ! :- '[#7]UnresolvedRelation [test_table_1], [], false +- '[#10]Join Inner, '`==`('id, 'index) ! +- '[#8]UnresolvedRelation [test_table_2], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 ! : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[#8]SubqueryAlias spark_catalog.default.test_table_2 ! +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_2`, [], false Can not resolve 'id with plan 7 ``` `[#7]UnresolvedRelation [test_table_1], [], false` was wrongly resolved to the cached one ``` :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ``` ### Does this PR introduce _any_ user-facing change? yes, bug fix ### How was this patch tested? added ut ### Was this patch authored or co-authored using generative AI tooling? ci Closes apache#46291 from zhengruifeng/connect_fix_read_join_35. Authored-by: Ruifeng Zheng <[email protected]> Signed-off-by: Ruifeng Zheng <[email protected]>
wangyum
pushed a commit
that referenced
this pull request
Nov 20, 2024
…plan properly ### What changes were proposed in this pull request? Make `ResolveRelations` handle plan id properly cherry-pick bugfix apache#45214 to 3.4 ### Why are the changes needed? bug fix for Spark Connect, it won't affect classic Spark SQL before this PR: ``` from pyspark.sql import functions as sf spark.range(10).withColumn("value_1", sf.lit(1)).write.saveAsTable("test_table_1") spark.range(10).withColumnRenamed("id", "index").withColumn("value_2", sf.lit(2)).write.saveAsTable("test_table_2") df1 = spark.read.table("test_table_1") df2 = spark.read.table("test_table_2") df3 = spark.read.table("test_table_1") join1 = df1.join(df2, on=df1.id==df2.index).select(df2.index, df2.value_2) join2 = df3.join(join1, how="left", on=join1.index==df3.id) join2.schema ``` fails with ``` AnalysisException: [CANNOT_RESOLVE_DATAFRAME_COLUMN] Cannot resolve dataframe column "id". It's probably because of illegal references like `df1.select(df2.col("a"))`. SQLSTATE: 42704 ``` That is due to existing plan caching in `ResolveRelations` doesn't work with Spark Connect ``` === Applying Rule org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations === '[#12]Join LeftOuter, '`==`('index, 'id) '[#12]Join LeftOuter, '`==`('index, 'id) !:- '[#9]UnresolvedRelation [test_table_1], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 !+- '[#11]Project ['index, 'value_2] : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[#10]Join Inner, '`==`('id, 'index) +- '[#11]Project ['index, 'value_2] ! :- '[#7]UnresolvedRelation [test_table_1], [], false +- '[#10]Join Inner, '`==`('id, 'index) ! +- '[#8]UnresolvedRelation [test_table_2], [], false :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 ! : +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ! +- '[#8]SubqueryAlias spark_catalog.default.test_table_2 ! +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_2`, [], false Can not resolve 'id with plan 7 ``` `[#7]UnresolvedRelation [test_table_1], [], false` was wrongly resolved to the cached one ``` :- '[#9]SubqueryAlias spark_catalog.default.test_table_1 +- 'UnresolvedCatalogRelation `spark_catalog`.`default`.`test_table_1`, [], false ``` ### Does this PR introduce _any_ user-facing change? yes, bug fix ### How was this patch tested? added ut ### Was this patch authored or co-authored using generative AI tooling? ci Closes apache#46290 from zhengruifeng/connect_fix_read_join_34. Authored-by: Ruifeng Zheng <[email protected]> Signed-off-by: Ruifeng Zheng <[email protected]>
pull bot
pushed a commit
that referenced
this pull request
Nov 1, 2025
### What changes were proposed in this pull request? This PR proposes to add `doCanonicalize` function for DataSourceV2ScanRelation. The implementation is similar to [the one in BatchScanExec](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/BatchScanExec.scala#L150), as well as the [the one in LogicalRelation](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/LogicalRelation.scala#L52). ### Why are the changes needed? Query optimization rules such as MergeScalarSubqueries check if two plans are identical by [comparing their canonicalized form](https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/MergeScalarSubqueries.scala#L219). For DSv2, for physical plan, the canonicalization goes down in the child hierarchy to the BatchScanExec, which [has a doCanonicalize function](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/BatchScanExec.scala#L150); for logical plan, the canonicalization goes down to the DataSourceV2ScanRelation, which, however, does not have a doCanonicalize function. As a result, two logical plans who are semantically identical are not identified. Moreover, for reference, [DSv1 LogicalRelation](https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/LogicalRelation.scala#L52) also has `doCanonicalize()`. ### Does this PR introduce _any_ user-facing change? No ### How was this patch tested? A new unit test is added to show that `MergeScalarSubqueries` is working for DataSourceV2ScanRelation. For a query ```sql select (select max(i) from df) as max_i, (select min(i) from df) as min_i ``` Before introducing the canonicalization, the plan is ``` == Parsed Logical Plan == 'Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- 'Project [unresolvedalias('max('i))] : : +- 'UnresolvedRelation [df], [], false : +- 'Project [unresolvedalias('min('i))] : +- 'UnresolvedRelation [df], [], false +- OneRowRelation == Analyzed Logical Plan == max_i: int, min_i: int Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- Aggregate [max(i#0) AS max(i)#7] : : +- SubqueryAlias df : : +- View (`df`, [i#0, j#1]) : : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 : +- Aggregate [min(i#10) AS min(i)#9] : +- SubqueryAlias df : +- View (`df`, [i#10, j#11]) : +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 +- OneRowRelation == Optimized Logical Plan == Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- Aggregate [max(i#0) AS max(i)#7] : : +- Project [i#0] : : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 : +- Aggregate [min(i#10) AS min(i)#9] : +- Project [i#10] : +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 +- OneRowRelation == Physical Plan == AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 0 +- *(1) Project [Subquery subquery#2, [id=#32] AS max_i#3, Subquery subquery#4, [id=#33] AS min_i#5] : :- Subquery subquery#2, [id=#32] : : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=58] +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14]) +- *(1) Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=19] +- HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14]) +- Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] : +- Subquery subquery#4, [id=#33] : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=63] +- *(1) HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15]) +- *(1) Project [i#10] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=30] +- HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15]) +- Project [i#10] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- *(1) Scan OneRowRelation[] +- == Initial Plan == Project [Subquery subquery#2, [id=#32] AS max_i#3, Subquery subquery#4, [id=#33] AS min_i#5] : :- Subquery subquery#2, [id=#32] : : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=58] +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14]) +- *(1) Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == HashAggregate(keys=[], functions=[max(i#0)], output=[max(i)#7]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=19] +- HashAggregate(keys=[], functions=[partial_max(i#0)], output=[max#14]) +- Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] : +- Subquery subquery#4, [id=#33] : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=63] +- *(1) HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15]) +- *(1) Project [i#10] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == HashAggregate(keys=[], functions=[min(i#10)], output=[min(i)#9]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=30] +- HashAggregate(keys=[], functions=[partial_min(i#10)], output=[min#15]) +- Project [i#10] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- Scan OneRowRelation[] ``` After introducing the canonicalization, the plan is as following, where you can see **ReusedSubquery** ``` == Parsed Logical Plan == 'Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- 'Project [unresolvedalias('max('i))] : : +- 'UnresolvedRelation [df], [], false : +- 'Project [unresolvedalias('min('i))] : +- 'UnresolvedRelation [df], [], false +- OneRowRelation == Analyzed Logical Plan == max_i: int, min_i: int Project [scalar-subquery#2 [] AS max_i#3, scalar-subquery#4 [] AS min_i#5] : :- Aggregate [max(i#0) AS max(i)#7] : : +- SubqueryAlias df : : +- View (`df`, [i#0, j#1]) : : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 : +- Aggregate [min(i#10) AS min(i)#9] : +- SubqueryAlias df : +- View (`df`, [i#10, j#11]) : +- RelationV2[i#10, j#11] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 +- OneRowRelation == Optimized Logical Plan == Project [scalar-subquery#2 [].max(i) AS max_i#3, scalar-subquery#4 [].min(i) AS min_i#5] : :- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] : : +- Aggregate [max(i#0) AS max(i)#7, min(i#0) AS min(i)#9] : : +- Project [i#0] : : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 : +- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] : +- Aggregate [max(i#0) AS max(i)#7, min(i#0) AS min(i)#9] : +- Project [i#0] : +- RelationV2[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5 +- OneRowRelation == Physical Plan == AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 0 +- *(1) Project [Subquery subquery#2, [id=#40].max(i) AS max_i#3, ReusedSubquery Subquery subquery#2, [id=#40].min(i) AS min_i#5] : :- Subquery subquery#2, [id=#40] : : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] +- *(2) HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=71] +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) +- *(1) Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=22] +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) +- Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] : +- ReusedSubquery Subquery subquery#2, [id=#40] +- *(1) Scan OneRowRelation[] +- == Initial Plan == Project [Subquery subquery#2, [id=#40].max(i) AS max_i#3, Subquery subquery#4, [id=#41].min(i) AS min_i#5] : :- Subquery subquery#2, [id=#40] : : +- AdaptiveSparkPlan isFinalPlan=true +- == Final Plan == ResultQueryStage 1 +- *(2) Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] +- *(2) HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) +- ShuffleQueryStage 0 +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=71] +- *(1) HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) +- *(1) Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- == Initial Plan == Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=22] +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) +- Project [i#0] +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] : +- Subquery subquery#4, [id=#41] : +- AdaptiveSparkPlan isFinalPlan=false : +- Project [named_struct(max(i), max(i)#7, min(i), min(i)#9) AS mergedValue#14] : +- HashAggregate(keys=[], functions=[max(i#0), min(i#0)], output=[max(i)#7, min(i)#9]) : +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [plan_id=37] : +- HashAggregate(keys=[], functions=[partial_max(i#0), partial_min(i#0)], output=[max#16, min#17]) : +- Project [i#0] : +- BatchScan class org.apache.spark.sql.connector.SimpleDataSourceV2$$anon$5[i#0, j#1] class org.apache.spark.sql.connector.SimpleDataSourceV2$MyScanBuilder RuntimeFilters: [] +- Scan OneRowRelation[] ``` ### Was this patch authored or co-authored using generative AI tooling? No Closes apache#52529 from yhuang-db/scan-canonicalization. Authored-by: yhuang-db <[email protected]> Signed-off-by: Peter Toth <[email protected]>
pull bot
pushed a commit
that referenced
this pull request
Nov 3, 2025
…int/Dockerfile` building ### What changes were proposed in this pull request? This PR aims to add `libwebp-dev` to fix `dev/spark-test-image/lint/Dockerfile` building in both `master` and `branch-4.1`. ### Why are the changes needed? Currently, `dev/spark-test-image/lint/Dockerfile` fails to build. - For master branch, it wasn't revealed yet because we use the cached image. - For `branch-4.1`, it is currently breaking the CIs. - https://github.com/apache/spark/tree/branch-4.1 - https://github.com/apache/spark/actions/runs/19015025991/job/54307102990 ``` #9 454.6 -------------------------- [ERROR MESSAGE] --------------------------- #9 454.6 <stdin>:1:10: fatal error: ft2build.h: No such file or directory #9 454.6 compilation terminated. #9 454.6 -------------------------------------------------------------------- #9 454.6 ERROR: configuration failed for package 'ragg' #9 454.6 * removing '/usr/local/lib/R/site-library/ragg' ``` ### Does this PR introduce _any_ user-facing change? No behavior change. ### How was this patch tested? Pass the CIs. Especially, `Base image build` job. - https://github.com/dongjoon-hyun/spark/actions/runs/19018354185/job/54309542386 ### Was this patch authored or co-authored using generative AI tooling? No. Closes apache#52838 from dongjoon-hyun/SPARK-54140. Authored-by: Dongjoon Hyun <[email protected]> Signed-off-by: Dongjoon Hyun <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Bumps postgresql from 42.3.3 to 42.4.1.
Release notes
Sourced from postgresql's releases.
Changelog
Sourced from postgresql's changelog.
... (truncated)
Commits
bd91c4cPrepare for release (#2580)739e599Merge pull request from GHSA-r38f-c4h4-hqq2736f959fix: replace syncronization in Connection.close with compareAndSet4673fd2feat: synchronize statement executions (e.g. avoid deadlock when Connection.i...fd31a06update the website content (#2578)a6044d0set a timeout to get the return from requesting SSL upgrade. (#2572)58d6fa0test: bump system-stubs-jupiter to 2.0.1 to support Java 16+b452d8ctest: avoid concurrent executions of tests that update environment and system...aa5758atest: update JUnit to 5.8.236cd24cfix: log connection URL when it can't be parsedDependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting
@dependabot rebase.Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR:
@dependabot rebasewill rebase this PR@dependabot recreatewill recreate this PR, overwriting any edits that have been made to it@dependabot mergewill merge this PR after your CI passes on it@dependabot squash and mergewill squash and merge this PR after your CI passes on it@dependabot cancel mergewill cancel a previously requested merge and block automerging@dependabot reopenwill reopen this PR if it is closed@dependabot closewill close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually@dependabot ignore this major versionwill close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)@dependabot ignore this minor versionwill close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)@dependabot ignore this dependencywill close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)@dependabot use these labelswill set the current labels as the default for future PRs for this repo and language@dependabot use these reviewerswill set the current reviewers as the default for future PRs for this repo and language@dependabot use these assigneeswill set the current assignees as the default for future PRs for this repo and language@dependabot use this milestonewill set the current milestone as the default for future PRs for this repo and languageYou can disable automated security fix PRs for this repo from the Security Alerts page.